128 research outputs found

    Procalcitonin reflects bacteremia and bacterial load in urosepsis syndrome: a prospective observational study

    Get PDF
    Introduction: Guidelines recommend that two blood cultures be performed in patients with febrile urinary tract infection (UTI), to detect bacteremia and help diagnose urosepsis. The usefulness and cost-effectiveness of this practice have been criticized. This study aimed to evaluate clinical characteristics and the biomarker procalcitonin (PCT) as an aid in predicting bacteremia. Methods: A prospective observational multicenter cohort study included consecutive adults with febrile UTI in 35 primary care units and 8 emergency departments of 7 regional hospitals. Clinical and microbiological data were collected and PCT and time to positivity (TTP) of blood culture were measured. Results: Of 581 evaluable patients, 136 (23%) had bacteremia. The median age was 66 years (interquartile range 46 to 78 years) and 219 (38%) were male. We evaluated three different models: a clinical model including seven bedside characteristics, the clinical model plus PCT, and a PCT only model. The diagnostic abilities of these models as reflected by area under the curve of the receiver operating characteristic were 0.71 (95% confidence interval (CI): 0.66 to 0.76), 0.79 (95% CI: 0.75 to 0.83) and 0.73 (95% CI: 0.68 to 0.77) respectively. Calculating corresponding sensitivity and specificity for the presence of bacteremia after each step of adding a significant predictor in the model yielded that the PCT > 0.25 mu g/l only model had the best diagnostic performance (sensitivity 0.95; 95% CI: 0.89 to 0.98, specificity 0.50; 95% CI: 0.46 to 0.55). Using PCT as a single decision tool, this would result in 40% fewer blood cultures being taken, while still identifying 94 to 99% of patients with bacteremia. The TTP of E. coli positive blood cultures was linearly correlated with the PCT log value; the higher the PCT the shorter the TTP (R-2 = 0.278, P = 0.007). Conclusions: PCT accurately predicts the presence of bacteremia and bacterial load in patients with febrile UTI. This may be a helpful biomarker to limit use of blood culture resources.Immunogenetics and cellular immunology of bacterial infectious disease

    Flavopiridol Pharmacogenetics: Clinical and Functional Evidence for the Role of SLCO1B1/OATP1B1 in Flavopiridol Disposition

    Get PDF
    Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy.Thirty-five patients who received single-agent flavopiridol via the PK-directed schedule were genotyped for 189 polymorphisms in genes encoding 56 drug metabolizing enzymes and transporters. Genotypes were evaluated in univariate and multivariate analyses as covariates in a population PK model. Transport of flavopiridol and its glucuronide metabolite was evaluated in uptake assays in HEK-293 and MDCK-II cells transiently transfected with SLCO1B1. Polymorphisms in ABCC2, ABCG2, UGT1A1, UGT1A9, and SLCO1B1 were found to significantly correlate with flavopiridol PK in univariate analysis. Transport assay results indicated both flavopiridol and flavopiridol-glucuronide are substrates of the SLCO1B1/OATP1B1 transporter. Covariates incorporated into the final population PK model included bilirubin, SLCO1B1 rs11045819 and ABCC2 rs8187710. Associations were also observed between genotype and response. To validate these findings, a second set of data with 51 patients was evaluated, and overall trends for associations between PK and PGx were found to be consistent.Polymorphisms in transport genes were found to be associated with flavopiridol disposition and outcomes. Observed clinical associations with SLCO1B1 were functionally validated indicating for the first time its relevance as a transporter of flavopiridol and its glucuronide metabolite. A second 51-patient dataset indicated similar trends between genotype in the SLCO1B1 and other candidate genes, thus providing support for these findings. Further study in larger patient populations will be necessary to fully characterize and validate the clinical impact of polymorphisms in SLCO1B1 and other transporter and metabolizing enzyme genes on outcomes from flavopiridol therapy

    Liquid Chromatography-Tandem Mass Spectrometry Analysis Demonstrates a Decrease in Porins and Increase in CMY-2 β-Lactamases in Escherichia coli Exposed to Increasing Concentrations of Meropenem

    Get PDF
    While Extended-Spectrum β-Lactamases (ESBL) and AmpC β-lactamases barely degrade carbapenem antibiotics, they are able to bind carbapenems and prevent them from interacting with penicillin-binding proteins, thereby inhibiting their activity. Further, it has been shown that Enterobacterales can become resistant to carbapenems when high concentrations of ESBL and AmpC β-lactamases are present in the bacterial cell in combination with a decreased influx of antibiotics (due to a decrease in porins and outer-membrane permeability). In this study, a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the detection of the Escherichia coli porins OmpC and OmpF, its chromosomal AmpC β-lactamase, and the plasmid-mediated CMY-2 β-lactamase. Bla CMY-2-like positive E. coli isolates were cultured in the presence of increasing concentrations of meropenem, and resistant mutants were analyzed using the developed LC-MS/MS assay, Western blotting, and whole genome sequencing. In five strains that became meropenem resistant, a decrease in OmpC and/or OmpF (caused by premature stop codons or gene interruptions) was the first event toward meropenem resistance. In four of these strains, an additional increase in MICs was caused by an increase in CMY-2 production, and in one strain this was most likely caused by an increase in CTX-M-15 production. The LC-MS/MS assay developed proved to be suitable for the (semi-)quantitative analysis of CMY-2-like β-lactamases and porins within 4 h. Targeted LC-MS/MS could have additional clinical value in the early detection of non-carbapenemase-producing carbapenem-resistant E. coli

    Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming

    Get PDF
    The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha−1 yr−1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ∼50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha−1 yr−1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years

    Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms

    Get PDF
    Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux

    Demand and experiences with financial products and services in climate smart villages

    Get PDF
    This study ‘Demand for and experiences with financial products and services’ describes and discusses the results of a survey to provide a first insight into the financial services that the smallholder farmers from climate smart villages use and to explore how these are related to climate smart agricultural technologies & practices. The study is one of three preliminary studies of a multi-year international research project (2016-2022) on ‘Business models, incentives and innovative finance for scaling climate smart agriculture (CSA)’. The knowledge and insights developed are used to further support ongoing and emerging climate smart projects in which CCAFS is involved. A survey was conducted to identify smallholder farmers and the small to medium enterprises (in different stages of the value chain) and their demand for and experiences with financial products and services. There were 148 respondents from 24 villages from Latin America, West Africa, East Africa, Southeast Asia and South Asia. The targeted number of female respondents (50%) was nog met in all regions, for example in India where the role of female farmers in irrigated agriculture would be limited. A limitation to the results is that in different regions a different number of villages was involved, making it more difficult to generalise results. Sometimes it would prove challenging to make conclusions about the reasoning behind the answers. The study is about adoption climate smart agriculture, but does not define the extent of adoption. .

    Toxic iron species in lower-risk myelodysplastic syndrome patients:course of disease and effects on outcome

    Get PDF
    • …
    corecore