3,415 research outputs found

    Levels of genetic polymorphism: marker loci versus quantitative traits

    Get PDF
    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species

    Precise location of Sagittarius X ray sources with a rocket-borne rotating modulation collimator

    Get PDF
    Precise location of Sagittarius X ray sources with rocket-borne rotating modulation collimato

    Decision making strategies used by experts and the potential for training intuitive skills: A preliminary study

    Get PDF

    Unequal relationships in high and low power distance societies: a comparative study of tutor - student role relations in Britain and China

    Get PDF
    This study investigated people's conceptions of an unequal role relationship in two different types of society: a high power distance society and a low power distance society. The study focuses on the role relationship of tutor and student. British and Chinese tutors and postgraduate students completed a questionnaire that probed their conceptions of degrees of power differential and social distance/closeness in this role relationship. ANOVA results yielded a significant nationality effect for both aspects. Chinese respondents judged the relationship to be closer and to have a greater power differential than did British respondents. Written comments on the questionnaire and interviews with 9 Chinese academics who had experienced both British and Chinese academic environments supported the statistical findings and indicated that there are fundamental ideological differences associated with the differing conceptions. The results are discussed in relation to Western and Asian concepts of leadership and differing perspectives on the compatibility/incompatibility of power and distance/closeness

    Wireless sensor networks for in-situ image validation for water and nutrient management

    Get PDF
    Water and Nitrogen (N) are critical inputs for crop production. Remote sensing data collected from multiple scales, including ground-based, aerial, and satellite, can be used for the formulation of an efficient and cost effective algorithm for the detection of N and water stress. Formulation and validation of such techniques require continuous acquisition of ground based spectral data over the canopy enabling field measurements to coincide exactly with aerial and satellite observations. In this context, a wireless sensor in situ network was developed and this paper describes the results of the first phase of the experiment along with the details of sensor development and instrumentation set up. The sensor network was established based on different spatial sampling strategies and each sensor collected spectral data in seven narrow wavebands (470, 550, 670, 700, 720, 750, 790 nm) critical for monitoring crop growth. Spectral measurements recorded at required intervals (up to 30 seconds) were relayed through a multi-hop wireless network to a base computer at the field site. These data were then accessed by the remote sensing centre computing system through broad band internet. Comparison of the data from the WSN and an industry standard ground based hyperspectral radiometer indicated that there were no significant differences in the spectral measurements for all the wavebands except for 790nm. Combining sensor and wireless technologies provides a robust means of aerial and satellite data calibration and an enhanced understanding of issues of variations in the scale for the effective water and nutrient management in wheat.<br /

    The thermal ecology of some Colias butterfly larvae

    Full text link
    The thermal ecology of Colias butterfly larvae has been studied, using simple modifications of previous thermistor implantation technology. Like their adults, these larvae rely on a repertoire of thermoregulatory behavior to control body temperature in relation to external heat sources and sinks. They neither heat nor cool by metabolic means. They display narrow, well-marked body temperature ranges for their major activity, feeding. These are 10–15 °C lower than the maximum activity temperatures of the adults. Also in contrast to the adults, the locations of the larval activity maxima differ by several degrees C between the taxa studied. In each taxon studied the rate of feeding reaches a maximum in a body temperature range corresponding roughly to the temperature range maximizing the occurrence of feeding. The overall larval growth rate is maximized under constant temperature regimes corresponding to the maximum feeding range. A qualitative model for larval activity in the field in relation to daily temperature changes is constructed and apparently supported in its essentials. These results are discussed in relation to other aspects of larval ecology, notably predator pressure, and some speculation on their meaning for larval metabolic organization is raised.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47110/1/359_2004_Article_BF00694570.pd

    The Globular Cluster Systems in the Coma Ellipticals. II: Metallicity Distribution and Radial Structure in NGC 4874, and Implications for Galaxy Formation

    Full text link
    Deep HST/WFPC2 (V,I) photometry is used to investigate the globular cluster system (GCS) in NGC 4874, the central cD galaxy of the Coma cluster. The luminosity function of the clusters displays its normal Gaussian-like shape and turnover level. Other features of the system are surprising: the GCS is (a) spatially extended, with core radius r_c = 22 kpc, (b) entirely metal-poor (a narrow, unimodal metallicity distribution with mean [Fe/H] = -1.5), and (c) modestly populated, with specific frequency S_N = 3.7 +- 0.5. We suggest on the basis of some simple models that as much as half of this galaxy might have accreted from low-mass satellites, but no single one of the three classic modes of galaxy formation (accretion, disk mergers, in situ formation) can supply a fully satisfactory formation picture. Even when they are used in combination, strong challenges to these models remain. The principal anomaly in this GCS is essentially the complete lack of metal-rich clusters. If these were present in normal (M87-like) numbers in addition to the metal-poor ones that are already there, then the GCS in total would more closely resemble what we see in many other giant E galaxies.Comment: 27 pp. with 9 Figures. Astrophys.J. 533, in press (April 10, 2000

    Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci

    Get PDF
    The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change

    Classical interventions in quantum systems. I. The measuring process

    Get PDF
    The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary interaction of that system with a measuring apparatus, a further interaction of both with an unknown environment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is needed. The final result is represented by a completely positive map of the quantum state ρ\rho (possibly with a change of the dimensions of ρ\rho). A continuous limit of the above process leads to Lindblad's equation for the quantum dynamical semigroup.Comment: Final version, 14 pages LaTe
    corecore