1,328 research outputs found

    Flow in a slowly-tapering channel with oscillating walls

    Get PDF
    The flow of a fluid in a channel with walls inclined at an angle to each other is investigated at arbitrary Reynolds number. The flow is driven by an oscillatory motion of the wall incorporating a time-periodic displacement perpendicular to the channel centreline. The gap between the walls varies linearly with distance along the channel and is a prescribed periodic function of time. An approximate solution is constructed assuming that the angle of inclination of the walls is small. At leading order the flow corresponds to that in a channel with parallel, vertically oscillating walls examined by Hall and Papageorgiou \cite{HP}. A careful study of the governing partial differential system for the first order approximation controlling the tapering flow due to the wall inclination is conducted. It is found that as the Reynolds number is increased from zero the tapering flow loses symmetry and undergoes exponential growth in time. The loss of symmetry occurs at a lower Reynolds number than the symmetry-breaking for the parallel-wall flow. A window of asymmetric, time-periodic solutions is found at higher Reynolds number, and these are reached via a quasiperiodic transient from a given set of initial conditions. Beyond this window stability is again lost to exponentially growing solutions as the Reynolds number is increased

    Theoretical Interpretation of GRB 031203 and URCA-3

    Full text link
    We present an analysis of the late time X-ray emission (URCA-3) connected with GRB 031203 and SN 2003lw.Comment: 3 pages, 2 figures, to appear in the proceedings of "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting, November 7-11, 2005, Munich, Germany, edited by B. Aschenbach, V. Burwitz, G. Hasinger, and B. Leibundgu

    Relativistic D-brane Scattering is Extremely Inelastic

    Full text link
    We study the effects of quantum production of open strings on the relativistic scattering of D-branes. We find strong corrections to the brane trajectory from copious production of highly-excited open strings, whose typical oscillator level is proportional to the square of the rapidity. In the corrected trajectory, the branes rapidly coincide and remain trapped in a configuration with enhanced symmetry. This is a purely stringy effect which makes relativistic brane collisions exceptionally inelastic. We trace this effect to velocity-dependent corrections to the open-string mass, which render open strings between relativistic D-branes surprisingly light. We observe that pair-creation of open strings could play an important role in cosmological scenarios in which branes approach each other at very high speeds.Comment: 30 pages; added references and a comment about velocity-dependent masse

    Navigating coeliac disease diagnosis in primary care

    Get PDF

    Spontaneous chiral symmetry breaking in the linked cluster expansion

    Get PDF
    We investigate dynamical chiral symmetry breaking in the Coulomb gauge Hamiltonian QCD. Within the framework of the linked cluster expansion we extend the BCS ansatz for the vacuum and include correlation beyond the quark-antiquark paring. In particular we study the effects of the three-body correlations involving quark-antiquark and transverse gluons. The high momentum behavior of the resulting gap equation is discussed and numerical computation of the chiral symmetry breaking is presented.Comment: 13 pages, 9 figure

    A systematic cross-search for radio/infrared counterparts of XMM-Newton sources

    Full text link
    We present a catalog of cross-correlated radio, infrared and X-ray sources using a very restrictive selection criteria with an IDL-based code developed by us. The significance of the observed coincidences was evaluated through Monte Carlo simulations of synthetic sources following a well-tested protocol. We found 3320 coincident radio/X-ray sources with a high statistical significance characterized by the sum of error-weighted coordinate differences. For 997 of them, 2MASS counterparts were found. The percentage of chance coincidences is less than 1%. X-ray hardness ratios of well-known populations of objects were used to provide a crude representation of their X-ray spectrum and to make a preliminary diagnosis of the possible nature of unidentified X-ray sources. The results support the fact that the X-ray sky is largely dominated by Active Galactic Nuclei at high galactic latitudes (|b| >= 10^\circ). At low galactic latitudes (|b| <= 10^\circ) most of unidentified X-ray sources (~94%) lie at |b| <= 2^\circ. This result suggests that most of the unidentified sources found toward the Milky Way plane are galactic objects. Well-known and unidentified sources were classified in different tables with their corresponding radio/infrared and X-ray properties. These tables are intended as a useful tool for researchers interested in particular identifications.Comment: Accepted for publication in Ap&SS. 47 pages, 10 figures. On-line material: figures and table

    A multiwavelength study of the supernova remnant G296.8-0.3

    Get PDF
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Adiabatic quantum pump in the presence of external ac voltages

    Full text link
    We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical rectification. In addition to two known terms we find a third novel contribution which arises from the interference of the ac currents generated by the external potentials and the ac currents generated by the pump. The interference contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this interference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the current generated by the oscillating potentials, and the ac current due to the variation of the charge of the frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur
    corecore