1,340 research outputs found

    Resonances in Fock Space: Optimization of a SASER device

    Full text link
    We model the Fock space for the electronic resonant tunneling through a double barrier including the coherent effects of the electron-phonon interaction. The geometry is optimized to achieve the maximal optical phonon emission required by a SASER (ultrasound emitter) device.Comment: 4 pages, 3 figures, to be published in Proceedings of the VI Latin American Workshop on Nonlinear Phenomena, special issue of Physica

    Orbiting Resonances and Bound States in Molecular Scattering

    Full text link
    A family of orbiting resonances in molecular scattering is globally described by using a single pole moving in the complex angular momentum plane. The extrapolation of this pole at negative energies gives the location of the bound states. Then a single pole trajectory, that connects a rotational band of bound states and orbiting resonances, is obtained. These complex angular momentum singularities are derived through a geometrical theory of the orbiting. The downward crossing of the phase-shifts through pi/2, due to the repulsive region of the molecular potential, is estimated by using a simple hard-core model. Some remarks about the difference between diffracted rays and orbiting are also given.Comment: 18 pages, 3 figures, to appear in Physical Review

    Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    Full text link
    A new method is presented for Fourier decomposition of the Helmholtz Green Function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Helmholtz Green function are split into their half advanced+half retarded and half advanced-half retarded components. Closed form solutions are given for these components in terms of a Horn function and a Kampe de Feriet function, respectively. The systems of partial differential equations associated with these two-dimensional hypergeometric functions are used to construct a fourth-order ordinary differential equation which both components satisfy. A second fourth-order ordinary differential equation for the general Fourier coefficent is derived from an integral representation of the coefficient, and both differential equations are shown to be equivalent. Series solutions for the various Fourier coefficients are also given, mostly in terms of Legendre functions and Bessel/Hankel functions. These are derived from the closed form hypergeometric solutions or an integral representation, or both. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented

    Defining Marine Irreplaceable Habitats: Literature review. NECR474.

    Get PDF
    Understanding which habitats should be considered irreplaceable in the marine environment is important for Natural England’s marine casework and in new areas of work such as marine net gain. Knowing which habitats are irreplaceable will assist developers, planners and regulators to avoid habitats that cannot be replaced or recreated elsewhere in compensation for their loss. The Marine Biological Association of the UK (MBA) was commissioned by Natural England to define marine habitat irreplaceability and define coastal and marine irreplaceable habitats. The commissioned project consisted of three stages: Stage 1: A literature review on definitions of marine habitat irreplaceability. Stage 2: Interviews with experts to further discuss and refine criteria for marine habitat irreplaceability. Stage 3: Application of methodology to assess irreplaceability to UK Level 3 and 4 EUNIS habitats

    Diffusive limit for a quantum linear Boltzmann dynamics

    Full text link
    In this article, I study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model I begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the gas particle scattering is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix that evolves according to a translation-covariant Lindblad equation. The main result is a proof that the particle's position distribution converges to a Gaussian under diffusive rescaling.Comment: 51 pages. I have restructured Sections 2-4 from the previous version and corrected an error in the proof of Proposition 7.

    Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin α1β2 in Newly Formed Tertiary Lymphoid Structures.

    Get PDF
    Lymphangiogenesis associated with tertiary lymphoid structure (TLS) has been reported in numerous studies. However, the kinetics and dynamic changes occurring to the lymphatic vascular network during TLS development have not been studied. Using a viral-induced, resolving model of TLS formation in the salivary glands of adult mice we demonstrate that the expansion of the lymphatic vascular network is tightly regulated. Lymphatic vessel expansion occurs in two distinct phases. The first wave of expansion is dependent on IL-7. The second phase, responsible for leukocyte exit from the glands, is regulated by lymphotoxin (LT)βR signaling. These findings, while highlighting the tight regulation of the lymphatic response to inflammation, suggest that targeting the LTα1β2/LTβR pathway in TLS-associated pathologies might impair a natural proresolving mechanism for lymphocyte exit from the tissues and account for the failure of therapeutic strategies that target these molecules in diseases such as rheumatoid arthritis

    Boost operators in Coulomb-gauge QCD: the pion form factor and Fock expansions in phi radiative decays

    Get PDF
    In this article we rederive the Boost operators in Coulomb-Gauge Yang-Mills theory employing the path-integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Moeller operators, weighted by the charge density in the target's rest frame. In addition we remark that the decomposition of the eta' wavefunction in quarkonium, gluonium, ... components attempted by the KLOE collaboration combining data from phi radiative decays, requires corrections due to the velocity of the final state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/psi decays.Comment: 14 pages, 4 figure

    Actors and networks or agents and structures: towards a realist view of information systems

    Get PDF
    Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    corecore