53 research outputs found

    A preliminary study in Wistar rats with enniatin : A contaminated feed

    Get PDF
    A 28-day repeated dose preliminary assay, using enniatin A naturally contaminated feed through microbial fermentation by a Fusarium tricinctum strain, was carried out employing two months-old female Wistar rats as in vivo experimental model. In order to simulate a physiological test of a toxic compound naturally produced by fungi, five treated animals were fed during twenty-eight days with fermented feed. As control group, five rats were fed with standard feed. At the 28th day, blood samples were collected for biochemical analysis and the gastrointestinal tract, liver and kidneys were removed from each rat for enniatin A detection and quantitation. Digesta were collected from stomach, duodenum, jejunum, ileum and colon. Enniatin A present in organs and in biological fluids was analyzed by liquid chromatography-diode array detector (LC-DAD) and confirmed by LC-mass spectrometry linear ion trap (MS-LIT); also several serum biochemical parameters and a histological analysis of the duodenal tract were performed. No adverse effects were found in any treated rat at the enniatin A concentration (20.91 mg/kg bw/day) tested during the 28-day experiment. Enniatin A quantitation in biological fluids ranged from 1.50 to 9.00 mg/kg, whereas in the gastrointestinal organs the enniatin A concentration ranged from 2.50 to 23.00 mg/kg. The high enniatin A concentration found in jejunum liquid and tissue points to them as an absorption area. Finally, two enniatin A degradation products were identified in duodenum, jejunum and colon content, probably produced by gut microflora

    Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma

    Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    Get PDF
    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization

    Underground search for the decay of Ta180m

    No full text
    Tantalum-180m is a very rare primordial isotope and is not in its nuclear ground state. The radioactivity of Ta180m has not yet been observed. Previous attempts to measure the half-life of Ta180m have been performed using various detectors located above ground. In this work a 606 g Ta disk of natural isotopic composition was measured for 170 d in the 225 m deep underground laboratory HADES. The new lower bound for the half-life is 1.7×1016 y for electron capture decay and 1.2×1016 y for Beta- decay. This gives a total lower bound for the half-life of 7.1×1015 y, which is a factor of 6 higher than the previous lower bound

    Gold(i) complexes of water-soluble diphos-type ligands: Synthesis, anticancer activity, apoptosis and thioredoxin reductase inhibition

    Full text link
    Gold(I) complexes of imidazole and thiazole-based diphos type ligands were prepared and their potential as chemotherapeutics investigated. Depending on the ligands employed and the reaction conditions complexes [L(AuCl)2] and [L2Au]X (X = Cl, PF6) are obtained. The ligands used are diphosphanes with azoyl substituents R2P(CH2)2PR2 {R = 1-methylimidazol-2-yl (1), 1-methylbenzimidazol-2-yl (4), thiazol-2-yl (5) and benzthiazol-2-yl (6)} as well as the novel ligands RPhP(CH2)2PRPh {R = 1-methylimidazol-2-yl (3)} and R2P(CH2)3PR2 {R = 1-methylimidazol-2-yl (2)}. The cytotoxic activity of the complexes was assessed against three human cancer cell lines and a rat hepatoma cell line and correlated to the lipophilicity of the compounds. The tetrahedral gold complexes [(3)2Au]PF6 and [(5)2Au]PF6 with intermediate lipophilicity (logD7.4 = 0.21 and 0.25) showed significant cytotoxic activity in different cell lines. Both compounds induce apoptosis and inhibit the enzymes thioredoxin reductase and glutathione reductase
    corecore