9,504 research outputs found

    Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet

    Get PDF
    The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect

    The effects of dust evolution on disks in the mid-IR

    Get PDF
    In this paper, we couple together the dust evolution code two-pop-py with the thermochemical disk modelling code ProDiMo. We create a series of thermochemical disk models that simulate the evolution of dust over time from 0.018 Myr to 10 Myr, including the radial drift, growth, and settling of dust grains. We examine the effects of this dust evolution on the mid-infrared gas emission, focussing on the mid-infrared spectral lines of C2H2, CO2, HCN, NH3, OH, and H2O that are readily observable with Spitzer and the upcoming E-ELT and JWST. The addition of dust evolution acts to increase line fluxes by reducing the population of small dust grains. We find that the spectral lines of all species except C2H2 respond strongly to dust evolution, with line fluxes increasing by more than an order of magnitude across the model series as the density of small dust grains decreases over time. The C2H2 line fluxes are extremely low due to a lack of abundance in the infrared line-emitting regions, despite C2H2 being commonly detected with Spitzer, suggesting that warm chemistry in the inner disk may need further investigation. Finally, we find that the CO2 flux densities increase more rapidly than the other species as the dust disk evolves. This suggests that the flux ratios of CO2 to other species may be lower in disks with less-evolved dust populations.Comment: 13 pages, 9 figures, accepted in A&

    The circumstellar envelope of AFGL 4106

    Get PDF
    We present new imaging and spectroscopy of the post-red supergiant binary AFGL 4106. Coronographic imaging in H-alpha reveals the shape and extent of the ionized region in the circumstellar envelope (CSE). Echelle spectroscopy with the slit covering almost the entire extent of the CSE is used to derive the physical conditions in the ionized region and the optical depth of the dust contained within the CSE. The dust shell around AFGL 4106 is clumpy and mixed with ionized gas. H-alpha and [N II] emission is brightest from a thin bow-shaped layer just outside of the detached dust shell. On-going mass loss is traced by [Ca II] emission and blue-shifted absorption in lines of low-ionization species. A simple model is used to interpret the spatial distribution of the circumstellar extinction and the dust emission in a consistent way.Comment: 10 pages, 11 figures. Accepted for publication in Astronomy & Astrophysics Main Journa

    Optical absorption in fused silica during TRIGA reactor pulse irradiation

    Get PDF
    Spectral transmission characteristics of fused silica before, during, and after exposure to reactor irradiation pulse

    Variability and nature of the binary in the Red Rectangle Nebula

    Get PDF
    We present new observations of the central binary inside the Red Rectangle nebula. The detection of zinc in the optical spectrum confirms that the peculiar photospheric abundances are due to accretion of circumstellar gas. Grey brightness variations with the orbital period are observed. They are interpreted as being due to the variation of the scattering angle with orbital phase. The small orbital separation of the system is not compatible with previous normal evolution of the primary on the AGB. We point out the similarity of the orbital history of this and other similar systems with those of some close Barium stars and suggest that the nonzero eccentricity of the orbit is the result of tidal interaction with the circumbinary disk.Comment: 4 pages, 3 figures, A&A Letters accepte

    The absence of the 10 um silicate feature in the isolated Herbig Ae star HD 100453

    Get PDF
    We analyse the optical and IR spectra, as well as the spectral energy distribution (UV to mm) of the candidate Herbig Ae star HD100453. This star is particular, as it shows an energy distribution similar to that of other isolated Herbig Ae/Be stars (HAEBEs), but unlike most of them, it does not have a silicate emission feature at 10 um, as is shown in Meeus (2001). We confirm the HAEBE nature of HD100453 through an analysis of its optical spectrum and derived location in the H-R diagram. The IR spectrum of HD100453 is modelled by an optically thin radiative transfer code, from which we derive constraints on the composition, grain-size and temperature distribution of the circumstellar dust. We show that it is both possible to explain the lack of the silicate feature as (1) a grain-size effect - lack of small silicate grains, and (2) a temperature effect - lack of small, hot silicates, as proposed by Dullemond (2001), and discuss both possibilities.Comment: 9 pages, 7 figures; accepted by A&

    The Thermal Structure of the Circumstellar Disk Surrounding the Classical Be Star gamma Cassiopeia

    Full text link
    We have computed radiative equilibrium models for the gas in the circumstellar envelope surrounding the hot, classical Be star γ\gamma Cassiopeia. This calculation is performed using a code that incorporates a number of improvements over previous treatments of the disk's thermal structure by \citet{mil98} and \citet{jon04}; most importantly, heating and cooling rates are computed with atomic models for H, He, CNO, Mg, Si, Ca, & Fe and their relevant ions. Thus, for the first time, the thermal structure of a Be disk is computed for a gas with a solar chemical composition as opposed to assuming a pure hydrogen envelope. We compare the predicted average disk temperature, the total energy loss in Hα\alpha, and the near-IR excess with observations and find that all can be accounted for by a disk that is in vertical hydrostatic equilibrium with a density in the equatorial plane of ρ(R)3\rho(R)\approx 3 to 51011(R/R)2.5gcm35\cdot 10^{-11} (R/R_*)^{-2.5} \rm g cm^{-3}. We also discuss the changes in the disk's thermal structure that result from the additional heating and cooling processes available to a gas with a solar chemical composition over those available to a pure hydrogen plasma.Comment: 11 pages, 8 figures high resolution figures available at http://inverse.astro.uwo.ca/sig_jon07.htm

    Autoclavable addition polyimides for 371 C composite applications

    Get PDF
    Studies were conducted to improve the thermo-oxidative stability (TOS) of PMR type polyimides by the substitution of para-aminostyrene (PAS) for the nadic ester endcap in second generation PMR polyimides (PMR-2). The nadic endcap which provides the PMR polyimides with their relative ease of fabrication, both by limiting the molecular weight of the prepolymer and by undergoing the final addition cure without volatiles, is also the weak link with regard to TOS. A polyimide formulated with PAS endcaps, called V-CAP, utilizes a two step reaction sequence similar to that of the PMR polyimides and can be easily autoclave molded into low void composite materials. Resin studies included two formulations of both PMR-2 and V-CAP, corresponding to n=9 and n=14 prepolymer stoichiometry. Unidirectional reinforced T40R graphite fiber laminates were fabricated from each of the resins was post-cured in either air at 385 C or nitrogen at 400 C. Composite specimens were aged in air at 371 C and mechanical properties were measured at 371 C before and after exposure
    corecore