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Abstract 

An important aim of cognitive science is to build 
computational models that account for a large number of 
phenomena but have few free parameters, and to obtain more 
veridical values for the models’ parameters by successive 
approximations. A good example of this approach is the 
CHREST model (Gobet & Simon, 2000), which has 
simulated numerous phenomena on chess expertise and in 
other domains. In this paper, we are interested in the 
parameter the model uses for shifting chess pieces in its 
mind’s eye (125 ms per piece), a parameter that had been 
estimated based on relatively sparse experimental evidence. 
Recently, Waters and Gobet (2008) tested the validity of this 
parameter in a memory experiment that required players to 
recall briefly presented positions in which the pieces were 
placed on the intersections between squares. Position types 
ranged from game positions to positions where both the piece 
distribution and location were randomised. CHREST, which 
assumed that pieces must be centred back to the middle of the 
squares in the mind’s eye before chunks can be recognized, 
simulated the data fairly well using the default parameter for 
shifting pieces. The sensitivity analysis presented in the 
current paper shows that the fit was nearly optimal for all 
groups of players except the grandmaster group for which, 
counterintuitively, a slower shifting time gave a better fit. The 
implications for theory development are discussed.     

Keywords: chess; computer modelling; expertise; mental 
imagery; learning; recall task; sensitivity analysis. 

Introduction 

As argued powerfully by Newell (1990) and others, one 

important aim of cognitive science is to develop 

computational models that account for an increasingly large 

number of phenomena; the number of free parameters in the 

models should be kept low, and their value should be made 

more precise by successive approximations. This aim has 

inspired the development of CHREST (Chunk Hierarchy 

and REtrieval STructures; see Gobet et al. 2001, for an 

overview). CHREST is a model of perception, learning, and 

expertise that explains the acquisition of knowledge by the 

growth of a discrimination net, where chunks and templates 

are stored. It also provides mechanisms explaining how 

long-term memory (LTM) knowledge directs eye 

movements. CHREST has accounted for data on chess 

perception, learning, and memory, the use of diagrammatic 

information in physics, the acquisition of vocabulary, and 

the acquisition of syntactic structures. The model has 

several capacity and time parameters that have been set 

using empirical data and similar parameters used in other 

computational models. While these parameters have turned 

out to be robust in the sense that they have enabled the 

simulation of numerous empirical data, little work has been 

done to establish the extent to which their value is optimal 

or near-optimal. In this paper, we address this question by 

considering a time parameter important in simulating chess 

players’ mental imagery. This choice is justified not only by 

the theoretical importance of the parameter, but also by the 

long-term practical impact that a better understanding of 

expert mental imagery could have for training and 

education. We also note that CHREST is one of the very 

few computational models currently able to make 

quantitative predictions about expert behaviour in tasks 

requiring mental imagery. 

We first review the experimental evidence on chess 

mental imagery, some of which was used by De Groot and 

Gobet (1996) for estimating our target parameter, and then 

provide an overview of CHREST. Next, we present in some 

detail a recent study by Waters and Gobet (2008), where 

CHREST’s predictions about the role of chunking in mental 

imagery were studied through a recall task. One aim of their 

study was to indirectly test CHREST’s time parameter for 

shifting a piece in the mind’s eye by half a square 

(thereafter, shifting parameter), and we summarize how the 

model’s predictions were met by the results of the 

experiment they carried out. The main part of the paper 

consists in a sensitivity analysis, where we examine to what 

extent CHREST’s simulations can be improved by 

searching the optimal value of the shifting parameter, which 

was set a priori in the original simulations. The discussion 

section highlights how CHREST could be improved using 

the outcome of the sensitivity analysis.  

Mental Imagery in Chess: Experimental Data 

The available experimental evidence on mental imagery in 

chess comes from two main sources: Experiments on 

blindfold chess, and experiments that have attempted to 

measure the time needed to move a piece in the mind’s eye. 

Blindfold Chess 

Blindfold chess is a spectacular form of chess where players 

play one or several games simultaneously without seeing the 
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board. In a series of ingenious experiments (Saariluoma, 

1991; Saariluoma & Kalakoski, 1997), games were 

presented aurally or visually, with or without interfering 

tasks. With aural presentation, the games were dictated 

using a standard chess notation (the algebraic chess 

notation). With visual presentation, only the current move 

was displayed on a computer screen (the remainder of the 

pieces were absent). For the present purposes, the most 

significant finding was that while performance was not 

affected by the presentation mode (auditory or visual), the 

modality of interfering tasks (verbal or visual) had a 

significant effect. Blindfold chess does not appear to rely 

much on verbal working memory, but makes heavy use of 

visuo-spatial working memory, with the qualification that 

the importance of visuo-spatial working memory is limited 

to the early stages of encoding. Once stored in long-term 

memory (LTM), information about positions becomes 

insensitive to tasks interfering with working memory. 

Finally, by manipulating the randomness of positions or the 

location of groups of pieces, Saariluoma (1991) obtained 

additional support for Chase and Simon’s (1973) hypothesis 

that perceptual chunks underpin skill in chess.   

Imagery Time Tasks  

The second group of experiments attempted to examine the 

variables influencing the time to carry out chess moves in 

the mind’s eye. Church and Church (1977) required a single 

Class A player to report whether the black King was being 

attacked (or not) by a lone white piece. The decision time 

(for the check verification task) increased as a function of 

the distance between the two pieces for diagonal moves, but 

not for horizontal/vertical moves. Milojkovic (1982) 

instructed participants to mentally carry out a particular 

capture in a subsequently presented position (P1). The 

chessboard remained on the screen as the capture was 

mentally performed (“P2”). The task was to decide whether 

the (imagined) position after capture (“P2”) was the same as 

another position (P3) (which appeared after P1 had been 

removed from view). The Master’s reaction times were 

faster than those of the novices. With both skill levels, 

reaction times depended on the distance between the two 

pieces involved in the capture. Novices, but not the Master, 

took longer with diagonal moves than with 

horizontal/vertical moves. Gruber (1991), who used the 

largest sample size of the studies mentioned in this section 

(24 experts, 24 novices), obtained the same results as 

Milojkovic in a check verification task: A significant skill 

effect, a significant distance effect, and a significant 

interaction between skill and movement-type. 

In Bachman and Oit’s (1992) experiment, chess players 

and non-players were presented with either an 8 x 8 grid or 

a chessboard. They were then required to close their eyes, 

listen to a sequence of instructions about the moves of a 

spot or a chess piece (up, down, right or left), and imagine 

following the spot or piece at it moves. At the end of the 

sequence of moves, participants had to indicate the end 

position of the spot or the piece. There were no skill 

differences in the moving-spot (8 x 8 grid) condition, but 

non-players made more errors than chess players in the 

moving-chess piece (chessboard) condition. Furthermore, in 

the moving-chess piece condition, skilled players tended to 

show Stroop-like interference when the piece was required 

to move in an unnatural fashion. For example, chess players 

found it difficult to imagine a Bishop moving horizontally 

(which is incongruent with its typical diagonal movement).   

The CHREST Theory 

CHREST consists of four main components: an LTM, 

where chunks are stored; a visual short-term memory (STM) 

with a capacity of 3 items; a mind’s eye system; and a 

simulated eye. LTM chunks are accessed by traversing a 

discrimination net (Simon, 1979). A discrimination net is a 

treelike structure consisting of a set of nodes connected by 

links. The links have tests, which are applied to check 

features of the external stimuli. The outcome of each test 

determines which link will be taken below a node. When a 

new object is presented to the model, it is sorted through the 

discrimination net, starting from the root node, until no 

further test applies. When a node is reached at the end of 

this process, the object is compared with the image of the 

node, which is the internal representation of the object. Two 

learning mechanisms are used. If the image under-represents 

the object, new features are added to the image, by the 

process of familiarization, which takes 2 s. If the 

information in the image and the object differ on some 

feature or some sub-element, a new link and a new node are 

created below the current node, by the process of 

discrimination, which takes 8 s. 

Chunks that are often recognized evolve into more 

complex data structures, known as templates, which have 

slots allowing variables to be instantiated rapidly (filling in 

information into a template slot takes 250 ms). In particular, 

information about piece location, piece type, or chunks can 

be (recursively) encoded into template slots. Slots are 

created at chunks where there is substantial variation in 

squares, pieces, or groups of pieces in the test links below. 

In addition to slots, templates contain a core, basically 

similar to the information stored in chunks. Chunks and 

templates can be linked to other information stored in LTM, 

such as (sequences of) moves.  

The mind’s eye stores perceptual structures, both from 

external inputs and from memory stores, for a short time (cf. 

Chase & Simon, 1973). The visuo-spatial information stored 

there can be subjected to visuo-spatial mental operations; in 

chess, it is the place where, for example, the trajectories of 

pieces are computed. The information stored in the mind’s 

eye decays rapidly and needs to be updated either by inputs 

from the external world or by inputs from memory 

structures. This assumption is in line with Kosslyn’s 

influential work on mental images (e.g., Kosslyn, 1994).  

CHREST makes several assumptions about the operations 

that are carried out in the mind’s eye. For chess, these 

operations include the time to move a piece mentally. These 

mental operations are assumed to take a definite amount of  
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Figure 1: Examples of the 5 types of stimuli used in the Gobet and Waters (2003; positions 1 to 5) and Waters and Gobet 

(2008; positions 6 to 10). "tr" stands for "truly randomized." (To make comparison easier, the same original position is used 

in the 10 conditions; different positions were actually used in the experiments.) 

 

time and are carried out serially (see Kosslyn, Cave, 

Provost, & Von Gierke, 1988, for data supporting the 

assumption that mental images are generated serially). In 

addition, the theory postulates definite mechanisms linking 

LTM, short-term memory (STM), and the mind’s eye (see 

Waters & Gobet, 2008, for details). The eye movements are 

directed from a combination of acquired knowledge, 

mediated by the structure of the discrimination net, and 

heuristics, such as fixating a part of the board about which 

nothing is known yet (De Groot & Gobet, 1996). 

Waters and Gobet’s (2008) Study 

De Groot and Gobet (1996, p. 236) proposed definite 

parameters for the time to move pieces in the mind’s eye. 

These parameters were derived from the few experiments 

available, which sometimes led to inconsistent results (see 

above). Based on this admittedly imperfect evidence, De 

Groot and Gobet opted for two parameters: first, a base 

parameter, set to 100 ms both for masters and novices; 

second, a square parameter, set to 50 ms for the masters and 

100 ms for the novices. The base parameter refers to the 

time needed to start the process of generating a move, while 

the square parameter estimates the time needed to move a 

piece over one square in the mind’s eye. For example, when 

a strong player imagines a bishop moving from the square 

“a1” (left bottom corner of the board) to the square “h8” 

(right top corner of the board), CHREST predicts that this 

takes 450 ms (100 ms to start the process and 7 x 50 ms per 

square). Although these parameters are plausible—they 

were derived from empirical data—they had not been tested 

directly, and the aim of Waters and Gobet’s (2008) study 

was to directly test their validity. (As there were no novices 

in their experiment, Waters and Gobet used only the 

“masters” parameters.) 

 Waters and Gobet created “intersection positions,” where 

the pieces were placed at the intersection of squares, rather 

than being placed in the middle of the squares (see Figure 

1). If chunks are recognized without the need to re-center 

pieces, then recall on the intersection positions should not 

differ from that on the standard positions. If, on the other 

hand, pieces need to be re-centered before chunks can be 

recognized, then there should be a decrease in performance. 

This decrease can be predicted by CHREST, and the 

parameter to shift pieces diagonally is crucial for these 

predictions. 

In addition, the ease by which chunks could be accessed 

in LTM was manipulated using positions with different 

levels of structure. These positions, which contained 25 

pieces on average, varied from game positions to fully 

randomized positions (see Figure 1, and see Gobet & 

Waters, 2003, for the detail of how these positions were 

constructed). Game positions were taken from master games 

without any change. Random positions were constructed by 

randomly reassigning the pieces of a game position to new 

squares. In “truly” random positions, not only the location 

of the pieces was randomized, but also the distribution of 

pieces (e.g., there could be 12 white kings in a position, 

contrary to the standard chess rules). One-third and two-



third truly random positions were positions where 1/3 and 

2/3 of the pieces were truly randomized. On intersection 

positions, the end product was manipulated by shifting all 

pieces to the south-east corners of the squares.   

The same nets as those used by Gobet and Waters (2003) 

in their simulation of standard positions were selected. 

These nets, defined by the number of LTM chunks, were 

selected as they fairly closely matched the mean recall of 

the four groups of human subjects on standard game 

positions. They were created by letting the program scan a 

large number of positions, so that chunks and templates can 

be acquired. The result of the simulations, both for standard 

and intersection positions, is shown in Figure 2 (left panel).  

These predictions were tested with a sample of 36 

players: a “grandmasters” group, a “masters/experts” group, 

a “Class A/B players” group (consisting of moderate to 

strong club players), and a “Class C/D players” group 

(consisting of weak club players). On each trial, a position 

was presented for 5 s. The screen then was blank for 2 s, and 

then an empty chess board appeared.  The participants were 

instructed to try to recall the positions as completely and as 

accurately as possible. Further details of the participants and 

experimental procedures are available in Waters and Gobet 

(2008). 

Figure 2 (right panel) shows the results. Recall was 

impaired on the intersection positions compared to the 

standard positions. This impairment was especially 

pronounced on the intersection game positions. Skill effects 

were present on the intersection game positions, but not on 

the other intersection positions.  

Interestingly, participants were better at recalling bishops 

than knights on the intersection positions (but not the 

standard positions), which is in line with Bachman and Oit’s 

(1992) study reviewed above and also supports the 

hypothesis that mental imagery played a role in this task: the 

mental transformations were easier for the bishops than the 

knights.  

These results suggest that, as predicted by CHREST, 

human information processing is slowed down by the 

processes of carrying out mental transformations to re-

centre pieces, which impairs the ability to access 

chunks/templates in the intersection game positions. 

However, while the fit for the simulation with intersection 

positions is good (all r2 >= .90; see Table 1, top), there is 

still room for improvement. Given that the re-centring 

process occurs often, and given the importance of the 125 

ms in this process, examining this parameter is a natural 

place to start for improving the model’s fit to the data. 

Sensitivity Analysis 

The transition-time of 125 ms was chosen for theoretical 

reasons, based on the estimate provided by De Groot and 

Gobet (1996) for moving a piece diagonally in the mind’s 

eye. To investigate the role of this parameter, we 

systematically varied it from 0 ms to 450 ms. The 

simulations otherwise followed the same procedure as that 

used in Waters and Gobet (2008). 

 

Methods 

We used the same version of CHREST and the same 

networks as those used by Gobet and Waters (2003) and 

Waters and Gobet (2008). During the simulations, the model 

moves its simulated eye around the board, and attempts to 

recognize chunks (or templates). The presentation time for 

each position was 5 s. Given this relatively short 

presentation time, the model could add information to LTM 

by familiarization and by filling in information into a 

template slot, but not by discrimination. 
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Figure 2:  Percentage of correct pieces as a function of type of position for standard positions (upper panel) and intersection 

positions (lower panel). Left: computer simulations; right: human data. Human data are from Gobet and Waters (2003) for 

the standard positions, and from Waters and Gobet (2008) for the intersection positions.  



The model attempts to memorize the intersection 

positions by carrying out the following steps: (a) in the 

mind’s eye, up to three pieces within the external visual 

field are moved serially to the centre of the square (as with 

previous versions of CHREST, the external visual field is 

defined as the set of squares +/- 2 squares away from the 

fixation point); (b) the (shifted) pattern of pieces is sorted 

through the discrimination net; and (c) if a chunk is 

recognized for this pattern, it is handled in the same way as 

with previous simulations using standard positions (Gobet 

& Simon, 2000; Gobet & Waters, 2003); that is, when an 

external pattern leads to the successful recognition of an 

LTM chunk, a pointer to the chunk is placed in visual STM.  

During recall, the model shifts the pieces back to their 

intersection location. With the exception of these 

mechanisms for handling intersection positions, CHREST’s 

mechanisms are the same as in previous simulations (i.e., 

simulations with standard positions). In addition, they are 

the same in all position types (from game to truly random). 

Thus, differences in recall performance reflect the 

probability that patterns present in the positions will elicit 

chunks or templates in LTM. 

To simplify the simulations, the two parameters defined 

by De Groot and Gobet (1996) were considered as a single 

parameter, which is the time needed to shift a piece across 

half a square. This time was systematically varied from 0 

ms to 450 ms, by steps of 25 ms. Thus, there were 380 

different conditions: 4 (network sizes) x 5 (position types) x 

19 (shifting time values). For each condition, 500 positions 

were used.  

Results 

As expected, recall was better across all position types and 

net sizes when transition-time was briefer (all correlations 

larger than -.87 in absolute value, and all p < .001). As 

measures of goodness of fit with the human data, we 

computed r2, the average absolute deviation (AAD), and the 

sum of squared errors (SSE). R square indicates how well a 

model captures the pattern of means of the empirical data. 

SSE and AAD provide information about the deviation of 

the model data from the empirical data. Higher r2, and lower 

AAD and SSE, indicate a better fit. As r2 was consistently 

above .93, .92, .90, and .85, for the 300k, 15k, 3k, and 1k 

nets, respectively, this measure was of little value for 

discriminating the effect of the parameter change. AAD and 

SSE produced more differentiated results. We focus on 

AAD here (With few exceptions, SSE produced similar 

results).  

Figure 3 shows how AAD varies as a function of the 

transition-time and Net Size. One can see that, for all nets 

except the 300k net, the minimum AAD value is close to 

that obtained with 125 ms. However, a better approximation 

is obtained when the transition-time is optimised for each 

Net Size. Goodness of fit with the optimal transition-time 

for each Net Size (325 ms, 175 ms, 100 ms, and 75 ms, for 

the 300k, 15k, 3k, and 1k nets respectively) is reported in 

Table 1. As can be seen, there is actually a strong positive 

relationship between optimal transition-time and the Net 

Size, meaning that the fit improves if the stronger simulated 

players use a longer translation time.   
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Figure 3: Absolute Average Deviation as a function of 

size of net and shifting time. The vertical arrow is placed at 

125 ms, the value used in the main simulations of this paper. 

 

 

 

Table 1: Goodness of fit for (a) the shifting value being 

equal to 125 ms for the four nets, and (b) the shifting values 

optimising AAD for each skill level. 

 

 net size       shift time   r2 AAD  SSE  
 

(a) Fit with 125ms for all nets 

300k  125 0.94   5.1      165.7 

15k  125 0.94   2.6 42.2 

3k  125 0.91   2.7 44.4 

1k  125 0.90   2.2 30.5 

    

Average  0.92   3.1 70.7 

 

(b) Fit with time values minimizing AAD 

300k  325 0.95   2.7 52.6  

15k  175 0.94   2.3 32.0  

3k  100 0.90   2.6 44.0  

1k   75 0.89   2.1 35.5  

     

Average  0.92   2.4 41.0  



Discussion 

The simulations carried out by Waters and Gobet (2008) 

on the recall of intersection positions showed that CHREST 

made several correct predictions with respect to the 

mechanisms putatively carried out in the mind’s eye. The 

predictions were made with parameters that were set a 

priori and independently from the data. Thus, the time 

parameters of CHREST were also well supported, in 

particular the shifting time for re-centring pieces. This value 

(125 ms) provided a fairly good fit for the data for all nets 

(see Figure 2 and Table 1). In general, the data supported 

the idea that pieces must be re-centred in the mind’s eye 

before pattern recognition can happen, and they also 

provided support for the assumption that the shifting time 

would be 125 ms. 

These results were satisfactory, considering that CHREST 

was not developed ad hoc to account for the results of the 

intersection experiment and that it makes absolute 

predictions about performance. However, an important 

scientific question is to know the extent to which the 

simulations could be improved by optimising some of the 

model’s parameters. This was the aim of this paper, which 

we addressed by carrying out a sensitivity analysis on the 

shifting time parameter.     

As expected, increasing the transition time from 0 to 450 

ms led to poorer recall over all position types. In addition, 

the sensitivity analysis revealed that the best fit was 

obtained with a shifting time (325 ms) for the 300k-chunk 

net that was of longer duration than the values for the 

smaller nets (Table 2). In general, the shifting times 

producing the best fit were positively correlated with skill 

(as estimated by the number of chunks), which is somewhat 

counter-intuitive. One would have expected that strong 

players should be faster in moving pieces in their mind’s 

eye. A likely explanation for this unexpected result is that 

stronger players keep more pieces in the mind’s eye, and 

that this produces an overhead affecting piece translation. 

That is, in our simulations, shifting pieces to the centre of 

the square was the only process that was assumed to be new 

in the intersection condition, and the impact of this process 

was a direct function of the shifting time. However, it is 

plausible that, as more pieces are held in the mind’s eye – 

and the model assumes that chunks held in visual STM are 

automatically unpacked in the mind’s eye, with the 

consequence that stronger players hold more pieces there – 

additional processes must happen to refresh the mental 

images. For example, Kosslyn (1994, p. 322) assumes that 

“the amount of material one can hold in an image is limited 

by the number of stored units that can be activated at the 

same time, for the following reasons: Each unit is activated 

individually, and time is required for each operation. And as 

soon as a unit has been activated, the image begins to fade 

[…].” Thus, the fact that slow values give a better fit with 

stronger players may be an artefact of the fact that we did 

not simulate in detail how information in the mind’s eye is 

maintained to counteract decay.  

Waters and Gobet (2008) carried out the simulations this 

way in order to keep the model as close as possible to earlier 

simulations, but it now appears that in this instance the 

model may have been too simple: while the simulations 

presented in that paper accounted for the data reasonably 

well, the sensitivity analysis pinpointed one aspect of the 

model that needs further development. Later versions of 

CHREST will have to take into consideration the detail of 

how the mind’s eye generates and maintains visual images. 

This will also make it possible to simulate the Stroop-like 

difference in recall of bishops and knights found by Waters 

and Gobet (2008), which the current version of the model 

cannot account for. 
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