16 research outputs found

    Challenges, solutions and research priorities for sustainable rangelands

    Get PDF
    Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a particular focus on research priorities. We surveyed participants of the Australian Rangeland Society 20th Biennial Conference, held in Canberra in September 2019, before the conference and in interactive workshops during the conference, in order to identify key challenges, potential solutions, and research priorities. The feedback was broadly grouped into six themes associated with supporting local communities, managing natural capital, climate variability and change, traditional knowledge, governance, and research and development. Each theme had several sub-themes and potential solutions to ensure positive, long-term outcomes for the rangelands. The survey responses made it clear that supporting ‘resilient and sustainable rangelands that provide cultural, societal, environmental and economic outcomes simultaneously’ is of great value to stakeholders. The synthesis of survey responses combined with expert knowledge highlighted that sustaining local communities in the long term will require that the inherent social, cultural and natural capital of rangelands are managed sustainably, particularly in light of current and projected variability in climate. Establishment of guidelines and approaches to address these challenges will benefit from: (i) an increased recognition of the value and contributions of traditional knowledge and practices; (ii) development of better governance that is guided by and benefits local stakeholders; and (iii) more funding to conduct and implement strong research and development activities, with research focused on addressing critical knowledge gaps as identified by the local stakeholders. This requires strong governance with legislation and policies that work for the rangelands. We provide a framework that indicates the key knowledge gaps and how innovations may be implemented and scaled out, up and deep to achieve the resilience of Australia’s rangelands. The same principles could be adapted to address challenges in rangelands on other continents, with similar beneficial outcomes

    Improving ground cover and landscape function in a semi-arid rangeland through alternative grazing management

    No full text
    The development and adoption of sustainable grazing strategies is important to improve the functionality and productivity of agricultural landscapes. Alternative grazing systems incorporating periods of planned rest may achieve this compared to continuous grazing systems, but the evidence is conflicting. Using paired paddock contrasts, soil characteristics, ground cover and landscape function (i.e. soil stability, nutrient cycling, infiltration and landscape organisation indices) were compared between alternative grazing management (incorporating periods of rest), traditional (continuous) grazing, and areas managed for conservation (ungrazed by commercial livestock but grazed by native and feral herbivores) on contrasting soil types in semi-arid rangelands. Relationships between the response variables and understorey floristic biodiversity measures were also explored. Total ground cover was greater under conservation management than grazing, and was greater under alternative grazing than traditional grazing management. Indices of landscape function, including stability, nutrient cycling, patch area and landscape organisation were significantly greater, and interpatch length significantly shorter, under conservation compared to traditional grazing management. Alternative grazing management had intermediate values of landscape function which did not differ significantly to traditional grazing or conservation treatments. Ground cover and floristic biodiversity measures were often positively correlated, but there was no clear relationship between most landscape function and plant biodiversity indices. Landscape function may be important in detecting changes in rangelands that remain undetected by floristic diversity measures. Alternative grazing strategies incorporating planned rest have the potential to improve ground cover with the associated benefits of improved productivity and landscape function compared to continuous grazing regimes

    Rotational grazing management achieves similar plant diversity outcomes to areas managed for conservation in a semi-arid rangeland

    No full text
    Despite the increasing extent of protected areas throughout the world, biodiversity decline continues. Grazing management that promotes both biodiversity and production outcomes has the potential to improve broad-scale conservation and complement the protected area network. In this study we explored the potential to integrate commercial livestock grazing and conservation in a semi-arid rangeland in south-eastern Australia. Understorey floristic composition and diversity were compared at different spatial scales across three grazing management treatments: (1) continuous commercial grazing management where paddocks were grazed for the majority of the year (≥8 months per annum); (2) rotational commercial grazing management where livestock are frequently rotated and paddocks rested for >4 months per annum; and (3) protected areas managed for conservation with domestic livestock excluded and grazed only by native and feral herbivores. The season of sampling, rainfall, soil characteristics and the spatial location of sites were the dominant drivers of variability in understorey plant species composition; the effect of grazing treatment on understorey plant species composition was relatively minor. However, areas managed for conservation and under rotational forms of commercial grazing management generally had greater floristic richness and diversity than continuously grazed areas, the results varying with season (spring/autumn) and soil type (clay/sandy-loam), particularly at fine scale (1-m4 months per annum; and (3) protected areas managed for conservation with domestic livestock excluded and grazed only by native and feral herbivores. The season of sampling, rainfall, soil characteristics and the spatial location of sites were the dominant drivers of variability in understorey plant species composition; the effect of grazing treatment on understorey plant species composition was relatively minor. However, areas managed for conservation and under rotational forms of commercial grazing management generally had greater floristic richness and diversity than continuously grazed areas, the results varying with season (spring/autumn) and soil type (clay/sandy-loam), particularly at fine scale (1-m2 quadrats). These findings indicate that rotational grazing management on commercial properties has the potential to improve biodiversity conservation outside the reserve system compared to conventional grazing management

    Challenges, solutions and research priorities for sustainable rangelands

    No full text
    Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a particular focus on research priorities. We surveyed participants of the Australian Rangeland Society 20th Biennial Conference, held in Canberra in September 2019, before the conference and in interactive workshops during the conference, in order to identify key challenges, potential solutions, and research priorities. The feedback was broadly grouped into six themes associated with supporting local communities, managing natural capital, climate variability and change, traditional knowledge, governance, and research and development. Each theme had several sub-themes and potential solutions to ensure positive, long-term outcomes for the rangelands. The survey responses made it clear that supporting ‘resilient and sustainable rangelands that provide cultural, societal, environmental and economic outcomes simultaneously’ is of great value to stakeholders. The synthesis of survey responses combined with expert knowledge highlighted that sustaining local communities in the long term will require that the inherent social, cultural and natural capital of rangelands are managed sustainably, particularly in light of current and projected variability in climate. Establishment of guidelines and approaches to address these challenges will benefit from: (i) an increased recognition of the value and contributions of traditional knowledge and practices; (ii) development of better governance that is guided by and benefits local stakeholders; and (iii) more funding to conduct and implement strong research and development activities, with research focused on addressing critical knowledge gaps as identified by the local stakeholders. This requires strong governance with legislation and policies that work for the rangelands. We provide a framework that indicates the key knowledge gaps and how innovations may be implemented and scaled out, up and deep to achieve the resilience of Australia’s rangelands. The same principles could be adapted to address challenges in rangelands on other continents, with similar beneficial outcomes

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore