14 research outputs found
Activating and inhibiting connections in biological network dynamics
<p>Abstract</p> <p>Background</p> <p>Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.</p> <p>Results</p> <p>Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.</p> <p>Conclusion</p> <p>The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.</p> <p>Reviewers</p> <p>Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.</p
Evolution of Sex-Specific Traits through Changes in HOX-Dependent doublesex Expression
Analysis in Drosophila suggests that evolutionary changes in the spatial regulation of the transcription factor doublesex play a key role in the origin, diversification, and loss of sex-specific structures
In a land with two laws: Spanish and indigenous justice in eighteenth century Oaxaca, Mexico.
In a land with two laws: Spanish and indigenous justice in eighteenth century Oaxaca, Mexico
Recommended from our members
Activating and inhibiting connections in biological network dynamics.
BackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior--for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section