445 research outputs found

    Selection and maintenance of sexual identity in the Drosophila germline.

    Full text link
    Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene

    The Lamprey Genome: Illuminating Genomic Change across Eons and Embryogenesis

    Get PDF
    The lamprey genome provides unique insights into both the deep evolutionary history of vertebrate genomes and the maintenance of genome structure/integrity over development. The lamprey lineage diverged from all other vertebrates approximately 500 million years ago. As such, comparisons between lamprey and other vertebrates permit reconstruction of ancient duplication and rearrangement events that defined the fundamental architecture and gene content of all extant vertebrate genomes. Lamprey also undergoes programmatic changes genome structure that result in the physical elimination of ~20% of its genomic DNA (~0.5Gb from a ~2 Gb genome) from all somatic cell lineages during early embryonic development. Here, we outline recent progress in assembly and analysis of the lamprey germline genome, and progress in the development of methods for characterizing the cellular events that mediate DNA elimination. We have integrated information from several sampling approaches and sequencing technologies to achieve a highly contiguous assembly of lamprey genome (including: Illumina fragments/mate pairs, 20X coverage in Pacific Biosciences reads, dense meiotic maps and optical mapping data). This genome assembly has dramatically improved our ability to dissect the molecular basis and genetic outcomes of programmed genome rearrangements (PGRs), and has improved our understanding of the tempo and mode of large-­scale duplications and translocations within the ancestral vertebrate lineage. Analysis of the germline genome identifies several genes that are expressed in germline but physically eliminated from all somatic tissues. These eliminated genes correspond to several known oncogenes and appear to identify several other novel oncogene candidates. Complementing this assembly, the development of approaches to in situ analysis of 3D preserved cells has revealed that PGR unfolds through a series of dramatic cellular events that involve the programmatic alteration of several fundamental mechanisms of genome maintenance, including: alignment of chromosomes at metaphase, chromatid cohesion, separation and segregation, and nuclear envelope formation

    Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii

    Get PDF
    The marine nitrogen fixing microorganisms (diazotrophs) are a major source of nitrogen to open ocean ecosystems and are predicted to be limited by iron in most marine environments. Here we use global and targeted proteomic analyses on a key unicellular marine diazotroph Crocosphaera watsonii to reveal large scale diel changes in its proteome, including substantial variations in concentrations of iron metalloproteins involved in nitrogen fixation and photosynthesis, as well as nocturnal flavodoxin production. The daily synthesis and degradation of enzymes in coordination with their utilization results in a lowered cellular metalloenzyme inventory that requires ~40% less iron than if these enzymes were maintained throughout the diel cycle. This strategy is energetically expensive, but appears to serve as an important adaptation for confronting the iron scarcity of the open oceans. A global numerical model of ocean circulation, biogeochemistry and ecosystems suggests that Crocosphaera’s ability to reduce its iron-metalloenzyme inventory provides two advantages: It allows Crocosphaera to inhabit regions lower in iron and allows the same iron supply to support higher Crocosphaera biomass and nitrogen fixation than if they did not have this reduced iron requirement.National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0452883)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0752291)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0723667)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0928414)National Science Foundation (U.S.). Polar Program (ANT-0732665)United States. Environmental Protection Agency (Star Fellowship)Woods Hole Oceanographic Institution. Ocean Life InstituteCenter for Microbial Oceanography: Research and EducationCenter for Environmental Bioinorganic Chemistr

    Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 742, doi:10.1038/s41598-017-18757-1.In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.We gratefully acknowledge support from the National Institutes of Health (R03NS078519 to OB; R01GM104123 to JJS; R01NS078165 to JRM), The Feinstein Institute for Medical Research and The Marine Biological Laboratory, including the Charles Evans Foundation Research Award, the Albert and Ellen Grass Foundation Faculty Research Award, and The Eugene and Millicent Bell Fellowship Fund in Tissue Engineering

    Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean

    Get PDF
    Background: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. Methodology/Principal Findings: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. Conclusions/Significance: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups

    On the Mysterious Propulsion of Synechococcus

    Get PDF
    We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus

    Dynamic political contexts and power asymmetries: the cases of the Blue Nile and the Yarmouk Rivers

    Get PDF
    This paper explores the evolving patterns of hydropolitical relations in the dynamic contexts of Yarmouk and Blue Nile Rivers in comparison. The analysis aims at shedding light over the complex implications that recent political and social changes have aroused for the water disputes between Jordan and Syria on the one hand, and Ethiopia and Egypt on the other. In both basins, cooperative efforts toward the integrated management of transboundary waters have been only partially effective and largely undermined by the perpetuation of unilateral actions by riparian states. In the case studies, the lack of a basin-wide vision over the control and use of shared waters has resulted in disputes among the basin states and ultimately in an unsustainable, unfair, and unwise utilization of the resources. This paper argues that a substantive and effective integration of national water policies is unlikely to occur, unless power asymmetries are properly addressed in order to overcome the likelihood of hegemonic regimes
    • …
    corecore