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A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its
velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic
potential, the dynamics of which have broken space-time symmetry, the system must be provided with some
internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mecha-
nism of this type, an experimental setup~gadget! that converts longitudinal oscillating or fluctuating motion
into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an
asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In
experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical
arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by
one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider
a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary
unidirectional motion of some swimming organisms in a liquid.

DOI: 10.1103/PhysRevE.65.011110 PACS number~s!: 05.90.1m, 45.90.1t, 01.50.My, 87.17.Jj

I. INTRODUCTION

Inspired by the Smoluchowski-Feynman ratchet@1–3#
and further pioneering studies@4–9#, a variety of mecha-
nisms for molecular motors have been suggested@10#. All
these approaches involve rectifying motion of an over-
damped Brownian particle in a spatially periodic structure
due to nonequilibrium oscillations or fluctuations of zero av-
erage, resulting in a biased current, so-called ratchet. Besides
this overdamped ratchet motion, Jung, Kissner, and Ha¨nggi
@11# have originated the whole class of deterministic ratchets
for systems with finite inertia~see, e.g., related papers@12–
20# and others@3#!. The present paper also deals with an
inertia ratchet—here the interplay of friction and inertia re-
sults in a unidirectional rotary motion.

The fundamental condition for the rectified transport to
occur is that certain symmetries, associated with spatial or
time reflection, are broken. On the other hand, a similar sym-
metry breaking can also be achieved parametrically, when at
least one of the system parameters depends asymmetrically
on external zero-mean forcing. However, for such a ratchet
mechanism to occur, the system must possess some internal
structure, i.e., it has to be a ‘‘machine’’ itself@21–23#. In this
paper, we suggest a ratchet mechanism for a system with
internal structure that admits altering intrinsic parameters of
the system through a broken symmetry of the dependence of
these parameters on its velocity or an external driving force.
One of these parameters can be the friction in a motion of the
system that depends asymmetrically on its velocity or the
driving force. We call this type of rectifying motion, which
occurs due to broken friction symmetry, a velocity- or force-
dependent friction ratchet, respectively.

To demonstrate the ratchet mechanism that appears due to
an asymmetry of the dependence of friction on an ac driving
force, we have built a simple experimental setup that unam-
biguously shows rotary ratchet motion. Note that mechanical

or electrical ratchet models can be useful for better under-
standing the physics of ratchet motion as well as for finding
new ratchet mechanisms, similarly as it was performed for
nonlinear dynamics studies in condensed matter physics,
where mechanical devices and electrical circuits have been
proved fruitful for modeling remarkable properties of nonlin-
ear collective excitations in solids@24# ~such as Scott’s
model@25#, experimentally demonstrating the propagation of
topological solitons, or the pendulum model suggested by
Russellet al. @26# for visual illustration of discrete breath-
ers!.

The paper is organized as follows. In Sec. II, we describe
a mechanical gadget, explaining intuitively the ratchet
mechanism of rotations in this device with presentation of a
corresponding general equation of motion. Explicit solutions
of this equation in two particular cases of dry and viscous
friction that demonstrate a rectified motion are given in Sec.
III. Concluding remarks and a brief discussion on different
particular cases of the general equation of motion of the un-
derdamped oscillator a velocity~force! dependent friction are
presented in Sec. IV. Derivation of the equation of motion for
the mechanical gadget is described in the Appendix.

II. AN EXPERIMENTAL MODEL FOR RECTIFICATION
OF ac FORCING

To demonstrate the rotary ratchet mechanism that appears
due to an asymmetry of the dependence of friction on an ac
driving force, we have made the simple experimental setup
~gadget! shown as a photograph in Fig. 1. In experiments,
this device shows unambiguously the rotary ratchet motion
directed clockwise when viewed from above. It consists of
two massive plates~weights!, which are connected by two
lateral springs, so that their geometric arrangement mimics a
right-handed helical structure. It is important that the lateral
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springs are very soft to bend, but hard to compress or stress
~being in fact elastic rods!.

The upper weight is resting on the lower weight with a
lower vertical spring in between, while an upper vertical
spring, for which the upper end is fixed, controls the pressure
of the lower plate on a supporting plate. Therefore the verti-
cal distance between the plates is fixed only by the vertical
springs, and the lateral springs do not participate in the force
balance. The ends of the lateral springs are attached to the
plates rigidly, whereas the vertical springs are allowed to
slide freely on the surfaces of the plates when they rotate. In
equilibrium, both the vertical springs little pressed, and this
construction allows us to exclude effectively the role of grav-
ity in experiments. Indeed, when the gadget is oriented, e.g.,
horizontally, the upper plate will be found in another
~shifted! equilibrium position, but still being pressed to the
supporting plate, resulting in a nonzero friction. Therefore,
gravity is not essential for the existence of a ratchet motion
and both the weights can be considered as masses. Instead,
the inertia of the upper plate is crucial for the sliding rotation
of the lower plate on the supporting plate. In a rotation
around the vertical axis, the friction of the lower weight de-
pends on the current vertical position of the upper weight;
that friction is larger as the weight~force! on the lower ver-
tical spring is larger, so that when an external oscillating or
fluctuating force is applied on the upper weight, the friction
in a rotation of the lower weight sliding on the supporting
plate depends strictly on the force applied to the upper
weight. The pair of the lateral springs~elastic rods! converts
the oscillating or fluctuating vertical force applied on the
upper weight into a force changing the angle between the
rotating plates. Because the frictional coupling between ro-
tations of the plates is larger when the lower vertical spring
is contracted than when it is extended, we get a rectification
as the lateral springs transfer a vertical motion into a rotation
in the horizontal plane.

In general, if we try formally to write the full system of
equations of motion for our system, one obtains a set of three
differential equations of the second order@27#, the analysis

of which is quite difficult. Numerical simulations of these
equations show different sophisticated regimes that crucially
depend on the system parameters. However, the geometry
and the physical parameters of springs in our device can be
fitted in such a way~see the Appendix! that the dynamics of
plate B are governed byone simpledynamical equation of
the type~A15!. The friction term of this equation is of a quite
general form, which in general can have no relevance to our
specific gadget. Thus, the basic equation of our studies in this
paper reads as follows:

V̇1g~ f !s~V!/V5 f , ~1!

where the dot stands for differentiation on timet, V is the
angular velocity of the lower plate,f 5 f (t) an external force,
g a friction coefficient that depends on external forcing, and
the functions(V) describes the type of friction. In the deri-
vation of Eq. ~1!, the emphasis was placed on the depen-
dence of its second~friction! term on the external forcef
and/or the velocityV. For simplicity, such effects in the dry
friction dynamics as crossover from stick slip to steady slid-
ing motion @28# and other effects~e.g., corrugation or pin-
ning! were not modeled.

As expected intuitively, for any nonincreasing, but neces-
sarily decreasing at least in some neighborhood of the point
f 50 in the domain of the functiong( f ), the average velocity
J[^V(t)& appears to be positive and this means that the
lower plate rotates clockwise when vied from above, and this
direction of rotation is indeed observed experimentally. With
this property of the functiong( f ), the inequalityJ.0 will
be proved below for the two casesn51,2, and for some
particular choices of the functiong( f ).

III. DIRECTED TRAJECTORIES DUE TO FRICTION
ASYMMETRY

Now we can use the symmetry arguments of Flachet al.
@12# to conclude that Eq.~1! is expected to support a ratchet
motion driven by a periodic forcef (t1T)5 f (t) under the
following two conditions: either~i! f (t1T/2)Þ2 f (t) ~bro-
ken time symmetry! and the dissipation function, i.e., the
second term in this equation, is a nonlinear function ofV,
but g(2 f )5g( f ) and s(2V)5s(V); or ~ii ! g(2 f )
Þg( f ) @or s(2V)Þs(V)#, but no conditions on the zero
average forcef (t). The former condition results in the
ratchet motion discovered by Vidybida and Serikov@29#.
Here we consider the latter case when the functiong( f ) is a
decreasing function of the forcef, at least in some neighbor-
hood of the pointf 50.

The steady-state solution of the dynamical system~1!,
governed by a periodic forcef (t) with a frequencyv, is a
periodic orbit V* (w), 0<w[vt<2p. For this orbit, we
define the average~global! velocity ~‘‘current’’ ! by the inte-
gral

J5^V* ~w!&5
1

2pE0

2p

V* ~w!dw. ~2!

FIG. 1. The experimental setup that consists of two~upper and
lower! helically rotating coupled plates. The supporting bottom
plate creates friction for the lower plate. A driving oscillating or
fluctuating force is applied to the upper plate, e.g., by hitting it
slightly from various directions. Colored noise was created by the
sound from a fog horn, acting on a horizontal membrane glued on
top of the upper plate. In all cases of forcing vertically~from above
or below!, the helical system was observed to rotate only clockwise
when viewed from above.
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Below we will illustrate the existence of a nonzero currentJ
@even if ^ f (t)&50# in some particular cases of the function
g( f ). To do this, we will need to calculate the phase shifts of
the nodes of the periodic functionV* (w) with respect to the
nodes of the external forcew50,p. These shifts are defined
by the equations

V* ~d1!50 and V* ~p1d2!50. ~3!

For convenience we introduce

V25V* ~0! and V15V* ~p!. ~4!

Figure 2 illustrates the phasesd6 and the velocitiesV6 in
the case of harmonic driving.

In the present paper, we restrict ourselves only to the two
particular cases of the basic equation~1!: s(V)5uVun with
n51 ~dry friction! andn52 ~viscous friction!. As regard the
functiong5g( f ), it is assumed to be nonincreasing, but nec-
essarily decreasing at least in some neighborhood of the
point f 50. For some particular cases of this function, the
global velocityJ can be calculated explicitly and the inequal-
ity J.0 proved rigorously. Below we will consider the cases
with dry and viscous friction separately.

A. Dry friction

In the case of dry friction (n51) we haves(V)5uVu
and the general equation~1! takes the form

V̇1sgn~V!g~ f !5 f . ~5!

The attractor of this equation is an asymmetric orbit and the
velocities~4! can be expressed as a result of integration,

V252E
0

d1 /v

@ f ~ t !1g~ t !#dt5E
(p1d2)/v

2p/v

@ f ~ t !1g~ t !#dt,

V15E
d1 /v

p/v

@ f ~ t !2g~ t !#dt52E
p/v

(p1d2)/v

@ f ~ t !2g~ t !#dt.

~6!

Eliminating from these equations the velocitiesV6 , in the
case of the harmonic forcing~A14!, one finds the two equa-
tions for the phase shiftsd6 ,

2 f 0~cosd11cosd2!5E
0

2p

g~ f 0 sinw!dw, ~7!

E
d1

p1d2

g~ f 0 sinw!dw5E
p1d2

2p1d1

g~ f 0 sinw!dw. ~8!

Rewriting the last equation in the form

S E
d1

p

2E
0

d1 D gdw5S E
p1d2

2p

2E
p

p1d2 D gdw, ~9!

one can prove thatd1,d2 . Indeed, sinceg( f ) is a nonin-
creasing, but strongly decreasing at least in some neighbor-
hood of the pointf 50, function, for the integral equality~9!
to be valid, the difference length of the intervals@p
2d1 ,p# and @0,d1# must exceed the difference length of
the intervals@p1d2 ,2p# and @p,p1d2#, resulting ind1

,d2 . Using this inequality in Eqs.~6!, one finds immedi-
ately thatV1.2V2.0.

In a neighborhood of the pointf 50, a continuously de-
creasing functiong( f ) can be approximated by a linear de-
pendence,

g~ f !5g02g1f , g0,1.0. ~10!

In the particular case of the harmonic force~A14!, with a
sufficiently low amplitude (f 0,g0 /g1, otherwise the fric-
tion g occurs to be negative and, therefore, meaningless!,
Eqs. ~6!–~8! are reduced to an explicit form and, therefore,
the attractor of Eq.~5! reads

V* ~w!5
f 0

v
35

~11g1!~cosd12cosw!1g0~d12w!

if d1<w<p1d1

~g121!~cosd21cosw!1g0~w2p2d2!

if p1d2<w<2p1d1 ,
~11!

where the phasesd6 satisfy the two equations

cosd11cosd25pg0 / f 0 , d22d15pg1 . ~12!

A straightforward calculation gives the global~average! ve-
locity,

FIG. 2. Steady trajectoryV* (w), w[vt ~arbitrary units!, in
the case of dry friction: the upper symmetric curve is input sinu-
soidal forcingf (t) and the lower asymmetric one is output angular
velocity V* (vt). The computation has been performed for the ex-
ponential frictiong( f )5g0 exp(2f/l) with the driving forcef (t)
5 f 0 sin(vt), whereg051, l57, f 052, andv51.
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J5~ f 0 /2v!~11g1
2!~cosd12cosd2!

1~g1f 0 /pv!~sind11sind2!.0. ~13!

Let us consider now another case of interest, when the
g( f ) has only one discontinuity atf 50, being the step func-
tion

g~ f !5H g1 if f >0,

g2 if f ,0.
~14!

Then the attractor of Eq.~5! is given by

V* ~w!5
f 0

v
3

¦

~cosd12cosw!1g1~w2d1!

if 0<w<d1

~cosd12cosw!1g1~d12w!

if d1<w<p

2~cosd21cosw!1g2~p1d22w!

if p<w<p1d2

2~cosd21cosw!1g2~w2p2d2!

if p1d2<w<2p,
~15!

where the phase shiftsd6 defined by Eqs.~3! satisfy the
equations

cosd11cosd25p~g11g2!/2f 0 , ~16!

g1~p/22d1!5g2~p/22d2!. ~17!

Explicitly, the velocities at the force nodes~4! become

V656@ f 0~12cosd7!1g7d7#/v. ~18!

Therefore, in the case of the friction asymmetry, e.g., when
g1,g2 , we have a nonzero current~global velocity!
J(g1 ,g2)52J(g2 ,g1).0 that vanishes in the limitg1

→g2 . This velocity is given by

J5@ f 0~cosd12cosd2!1~g2d2
2 2g1d1

2 !#/2v. ~19!

In a general case, any decreasing functiong( f ) can be
represented as a limit of the sums of step functions of the
type~14!. Using such an expansion, one can extend the proof
of positivity of the currentJ for any nonincreasing, but de-
creasing at least at one point, functiong( f ).

Since the case of the friction coefficientg( f ) defined in
the Appendix by the rational function~A13! seems to be the
most realistic one for our gadget, but it cannot be treated
analytically, it is interesting to find numerically the steady
solution to Eq.~5!. As shown in Fig. 3, after starting numeri-
cal simulations, the solutionV(t) approaches the attractor
V* very fast.

This figure clearly demonstrates that plateB practically
never steps backwards, like the recent molecular motor
model@21#, and this behavior is indeed observed visually in
experiments with our gadget.

B. Viscous friction

In the particular case of viscous friction (n52), the basic
equation~1! is reduced to the equation for an underdamped
particle moving in a viscous liquid,

V̇1g~ f !V5 f . ~20!

Although the viscous friction is not the case of relevance to
our gadget, nevertheless overdamped equations of the type
~20! are ubiquitous in mechanochemistry and biology
@3–10#. As already mentioned, for some systems the friction
term in Eq. ~20! is assumed to depend nonlinearly on the
velocity @29#, resulting in a unidirectional motion. Here we
imposeg to depend on the forcing and it is intuitively obvi-
ous that this can lead to a ratchet effect. To confirm this
statement analytically, we study the properties of a steady
solution of Eq.~20!.

First we consider the overdamped case, when the first
~inertial! term in Eq.~20! is ignored and the forcef (t) has
another origin, not related to the gadget described above.
This case may be of biological relevance, describing a rotary
motion of some bacteria@30,31# or complex filaments@32# in
a liquid, the surface friction of which can depend on the
direction of the driving forcef (t).

Let us represent an oscillating or fluctuating force
f (t), 0<t,`, with ^ f (t)&50, as the sum of its positive
and negative parts:f (t)5 f 1(t)2 f 2(t) where f 6(t)>0.
Then for any decreasing functiong( f ), we immediately find

from Eq. ~20!, in the limit V̇→0, the following chain of
inequalities:

J5^ f 1~ t !/g@ f 1~ t !#&2^ f 2~ t !/g@ f 2~ t !#&.^ f 1~ t !/g~0!&

2^ f 2~ t !/g~0!&50, ~21!

because due tôf (t)&50, it follows that^ f 1(t)&5^ f 2(t)&.
Intuitively, in the underdamped case of Eq.~20!, the phase

of a steady orbit will be delayed in comparison with the
phase of a periodic forcingf (t), similarly to the plot shown
in Fig. 2. This can be confirmed again for the case of the step
function ~14!. Indeed, in a general case, one can represent a
steady solution of Eq.~20! in the following form:

V* @w~ t !#5V7A6~ t !1B6~ t !, ~22!

FIG. 3. Rotational velocityV(t) ~arbitrary units! in the case of
dry friction with rational friction dependenceg( f )5g0(z12 f )/( f
2z2) and the driving forcef (t)5 f 0 sin(vt), computed numerically
for g051, z152z251, f 051/2, andv51.
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where the functionsA6(t) andB6(t) are defined by

A6~ t !5expF2E
t6

t

g~t!dtG ,
B6~ t !5E

t6

t

expF2E
t

t

g~t8!dt8G f ~t!dt, ~23!

with t150 andt25p/v. Using the periodicity of the orbit
~22!, we find the velocitiesV6 @see their definition~4!#,

V65~a6b71b6!/~12a1a2!, ~24!

wherea6 are given as follows:

a65A6~ t61p/v!, b65B6~ t61p/v!. ~25!

In the particular case of the harmonic forcing~A14! and
the step friction~14!, a direct calculation yields

A6~ t !5exp@2g6~ t2t6!#,

B6~ t !5
f 0

v21g6
2 @g6 sin~vt !2v cos~vt !6vA6~ t !#,

~26!

and, therefore@see the definitions~25!#, one obtains

a65exp~2pg6 /v!, b656 f 0v
11a6

v21g6
2 . ~27!

Using the expression~27!, we get

V656
f 0v

~v21g1
2 !~v21g2

2 !

3Fv21g6
2 1

~11a6!~g7
2 2g6

2 !

12a1a2
G . ~28!

Some limiting cases of Eqs.~28! can be considered. In par-
ticular, wheng2→`, but g1 is finite, we have

V1→ f 0v~11a1!

v21g1
2 .0, V2→0. ~29!

Also, V15V25 f 0v/(v21g2) if g15g2[g. Next, using
Eqs. ~22!, ~26!, and ~27!, the integral~2! can be calculated,
resulting in the expression

J~g1 ,g2!52J~g2 ,g1!

5
f 0

2p H v2

12a1a2
S 1

v21g1
2 2

1

v21g2
2 D

3F ~12a1!~11a2!

g1
1

~11a1!~12a2!

g2
G

12S g1

v21g1
2 2

g2

v21g2
2 D J . ~30!

If g1,g2 , the first term in Eq.~30! is positive, but the
second one can be either positive or negative. Since the func-
tion g/(v21g2) has a maximum atg5v, we obtain

g1

v21g1
2 2

g2

v21g2
2 .2

v

v21v2 52
1

2v
. ~31!

Using this inequality, we derive the positivity of the averaged
velocity,

J.J~g150,g25v!5
f 0

4v
coth

p

2
.0. ~32!

Note, in the particular caseg150 andg2.0, the expres-
sion ~30! is simplified toJ5(V11V2)/4, and furthermore,
if g2→`, we obtainJ→ f 0/2v.

IV. CONCLUDING REMARKS

Thus, we have suggested a ratchet mechanism that ap-
pears due to an asymmetry of the dependence of the dissipa-
tion function of the system on its velocity or external forcing.
This mechanism appears to be described by the standard un-
derdamped equation of motion for a particle moving in a
periodic potentialU(x), with x5x(t) being a coordinate of
the particle, generalized to include some additional dynami-
cal properties such as nonlinear friction, dependence on ex-
ternal forcing, etc. and written in the form@compare with Eq.
~1!#

ẍ1U8~x!1G~ ẋ, f !/ ẋ5 f . ~33!

Here the friction term is given in a generalized form, through
the dissipative functionG(t). Besides a dependence on the
velocity ẋ(t), which in general may be nonlinear@29#, the
function G in Eq. ~33! is imposed to depend also on an
external oscillating or fluctuating forcef (t) with zero aver-
age@^ f (t)&50#. Equation~33! can be considered as a more
generalized version of the gadget model, when the surface
corrugation of the supporting plate is modeled by a spatially
periodic potential.

Following the symmetry arguments formulated recently
by Flachet al. @12#, one can classify the following four par-
ticular types of Eq.~33!, with

G~ ẋ, f !5g~ f !s~ ẋ!, s~ ẋ!>0, ~34!

and g being a force-dependent friction coefficient, each of
which admits ratchet dynamics:

~i! The friction coefficient is a symmetric function with
respect to an external force, i.e.,g(2 f )5g( f ), including the
usual case, when this coefficient does not depend on the
force at all. Also, the dissipation is assumed to be viscous,
i.e.,s( ẋ)5 ẋ2. The rectification in this case occurs either due
to broken spatial@U(2x)ÞU(x)# or time ~e.g., harmonic
mixing! symmetry@3,12#.

~ii ! The periodic potential is absent@U(x)[0# and
g(2 f )5g( f ), or g does not depend onf. The rectification
occurs due to nonlinearity of the functions( ẋ) ~e.g., if s
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5ẋ21ẋ4) and broken time symmetry~e.g., due to harmonic
mixing in the force f ) as shown by Vidybida and Serikov
@29#.

~iii ! The periodic potential is absent@U(x)[0#, the func-

tion s( ẋ) does not necessarily result in a nonlinear friction
term in the equation of motion~33!, and the time symmetry
is not broken. The rectification occurs, as shown in this pa-
per, due to broken symmetry of the force-dependent friction,
i.e., wheng(2 f )Þg( f ).

~iv! The overdamped limit of the case~iii !, when the first
~inertia! term in Eq. ~33! is omitted, can be adopted as a
particular case. Here the rectification also occurs due to bro-
ken symmetry of the force- or velocity-dependent friction,

i.e., wheng(2 f )Þg( f ) or s(2 ẋ)Þs( ẋ), respectively.
The present paper focuses on the case of force-dependent

friction, which can exist in both underdamped and over-
damped limits. In order to support the idea of the ratchet as a
result of broken friction symmetry, we have constructed an
experimental device—a mechanical diode that changes the
friction coefficient, while an external force is applying to the
system. The simplest solution of this problem seemed to con-
vert the force applied normally to a sliding weight. To make
the asymmetry, which could drive a unidirectional rotation of
the sliding plate, we used a helical asymmetry being a basic
feature of biomolecular structure. However, the full system
of corresponding exact equations of motion for such a sys-
tem is too sophisticated: three coupled nonlinear dynamical
equations have been derived previously@27#. This set of
equations appears to be very difficult for analytical analysis
and numerical simulations do not clarify the physics of their
evolution. Different regimes, including regular and chaotic
behavior, reversals of directed motion, and others were found
numerically, and this is not a surprise because even the
ratchet dynamics of one underdamped equation of motion of
the type~33! are not yet fully understood as shown by recent
studies@11,17,19#. Therefore, there was a technical problem
to construct a gadget in such a way that it would be possible
somehow to reduce the set of three dynamical equations to
only one equation of motion and to demonstrate clearly a
ratchet motion. The gadget shown in Fig. 1 indeed demon-
strates the rotary motion illustrated by Fig. 3, being a repre-
sentative of motors that never step backwards@21#. The es-
sence of this device is that its dynamics can be described by
the simple equation~1!, which can easily be treated analyti-
cally. Therefore the basic equation of motion~1! with the
force-dependent friction coefficient of the rational type given
below by Eq.~A13! is of a realistic type because it results in
the solution shown in Fig. 3 confirmed with experiments on
the gadget.

In should be mentioned that our gadget demonstrates the
rotary ratchet motion, usingdry friction. However, this idea
can be extended to systems withviscousfriction and this
type of ratchet can play an essential role in rectification of
bacterial swimming@30#. Thus, strains of the cyanobacte-
rium Synechococcusare known@31# to swim in seawater at
speeds of up 25mm/s, demonstrating very high efficiency of
a unidirectional motion. They are rod-shaped organisms with
about 1 mm in diameter and 2mm long. Synechococcus

swim in the direction of their long axis, following an irregu-
lar helical track. Their means of locomotion are not known,
and they have no flagella, either external or internal. As far
as one can see by light microscopy, they do not change
shape. Under certain growth conditions, long asymmetric
cells appear, but these just roll rigidly around an axis parallel
to their long axis, the direction of locomotion@31#. An ion
turbine mechanism has been proposed for other bacteria@33#
but it has been ruled out forSynechococcus@34#. Based on
this knowledge, a so-called self-propulsive mechanism of cy-
anobacterial swimming has been suggested and correspond-
ing theories have been developed in a number of works~see,
e.g., Refs. @31,35,36#!. According to these theories, the
swimming is a result of surface tangential or normal waves,
or their combination, that travel along the outer cell mem-
brane. The type of surface oscillations and the direction of
wave propagation determine the direction of motion for cy-
anobacteria. For instance, for tangential surface waves, a
spherical organism swims in the same direction as the sur-
face wave. However, it is not clear yet why the direction of
wave propagation occurs in one direction, but not in the
other one. Some kind ofinternal dynamical asymmetry can
be involved to explain a unidirectional motion@22#. On the
other hand, a surface asymmetry of bacteria seems to play an
essential role in rectification of their rotary or linear motion.
In particular, helical tracks observed in these motions con-
firm this point of view. Note that the helical asymmetry is
ubiquitous in biology and it can be a source of a broken
symmetry in the dependence of surface friction of bacteria
on their direction of motion, i.e., their linear or rotary veloc-
ity. Combination of self-propulsion with the asymmetric de-
pendence of the friction on internal or external forcing or the
velocity seems to a reasonable idea for further studies of
bacterial swimming that can provide an insight into the phys-
ics of microbiological motility.
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APPENDIX: EQUATIONS OF MOTION FOR THE
EXPERIMENTAL MODEL

Using the intuitive arguments of Sec. II, here we derive
the equation of motion~1! for the experimental model, the
photograph of which is shown in Fig. 1. For notations used
in this derivation, a schematic figure~Fig. 4! is presented.
Here the upper and the lower plates are denoted withA and
B, respectively. Next, the lateral springs and the lower and
the upper vertical springs are numbered with 1, 2, 3, and 4,
respectively. The positive direction of a rotation of plateB is
shown by the arrow.

Let R0 be the radius of the helical backbone of the setup,
and MA and MB be masses of platesA andB, respectively.
The equilibrium state of the system is given by the dimen-
sionless~measured in units ofR0) vertical distanceh be-
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tween platesA andB and the anglef,p/2 that determines
the relative equilibrium orientation of the plates. Under dif-
ferent motions of platesA andB, the lengthl of springs 1 and
2, given by

l 5Ah212~12cosf!, ~A1!

practically does not change and, therefore, they create a con-
straint in the system. The supporting plate in the setup~see
Figs. 1 and 2! generates a sliding friction for a rotary motion
of plate B. This friction depends on the normal response
force NB directed upwards and created by the supporting
plate. In its turn, this response depends on how spring 3 is
pressed~or stretched!, and this dependence is governed by an
external normal forceFn(t), acting from plateA through
spring 3 as well as through the lateral springs, acting as a
constraint. Any tangential forcing that exceeds the friction of
rest, results in a rotation of plateB.

One of the equations of motion can be derived for the
angular variablesuA(t) and uB(t), instantaneous deviations
of platesA and B from their equilibria. We denote the mo-
ments of inertia byaMAR0

2 andbMBR0
2, with a andb being

~dimensionless! geometric form factors for platesA and B,
respectively. Since the lateral springs are soft to bend, the
interaction ofA and B through these springs in the vertical
direction can be ignored. This technical point essentially
simplifies the full system of dynamical equations, which in
general take a very complicated form@27#. Therefore in this
setup, one can account for only a tangential response forceTt
that appears due to the constraint created by the lateral
springs. In general, except for the forceTt , an external tan-
gential forceFt may be applied, so that the tangential equa-
tion of motion for plateA is

aMAR0üA5Tt1Ft . ~A2!

The second equation that governs the friction dynamics of
plateB can be written in the form

bMBR0üB1G~ u̇B ,NB!/R0u̇B52Tt , ~A3!

where the dissipation functionG for the lower plate depends
on the angular velocityu̇B and the response forceNB , acting
from the side of the supporting plate. Next, the response
force Tt can be excluded from the equations of motion~A2!
and ~A3! and, as a result, we obtain one tangential equation
for the angle variablesuA anduB :

aMAüA1bMBüB1G~ u̇B ,NB!/R0
2u̇B5Ft /R0 . ~A4!

The equation of motion that describes the vertical dynam-
ics of plateA driven by the normal forceFn(t) reads

MAz̈1hAMAż1KV8~z!5Fn /R0 , ~A5!

wherez is the displacement of plateA from its vertical equi-
librium position given by springs 3 and 4~and weightA if
the gadget is placed vertically!. The~dimensionless! function
V(z), with a minimum atz50, describes the strain energy of
the vertical springs. The string parametershA and K stand
for the friction and the stiffness, respectively. The solution of
Eq. ~A5! uniquely determines the variablez(t) as a function
of the normal forceFn(t).

The last equation of motion results from the constraint
imposed on platesA andB by the stiff lateral springs~acting
in fact as rods!, leading to a geometric relation between the
variablesuA , uB , and z. Since the length of the lateral
springs in our setup is practically unchanged~because they
are too hard to compress or stress!, approximately, one finds
the dependencez5z(uA2uB),

z5A2 cos~f2uA1uB!22 cosf1h22h. ~A6!

For our analysis it is sufficient to use the linear approxima-
tion of Eq. ~A6!,

z5h21~uA2uB!sinf. ~A7!

Using Eq.~A7!, the variableuA(t) can be eliminated in
Eq. ~A4!, leading to the equation,

V̇1G~V,NB!/MR0
2V52m z̈ ~A8!

with respect to the angular velocityV[u̇B of plateB. Here
M5aMA1bMB andm5ahMA /M sinf are system param-
eters. The tangential forceFt appears to be not involved into
the ratchet mechanism and, therefore, it is omitted in Eq.
~A8!. Without loss of generality, we assume that the dissipa-
tion functionG in Eq. ~A8! can be factorized as

G~V,NB!5MBR0
2G~NB!s~V!, ~A9!

whereG is the friction coefficient being a function of only
the variablez ands(V) is a function of the angular velocity
V depending on the type of friction. In the particular case of
our gadget, we deal with dry friction and, therefore, here one
can puts(V)5uVu.

As mentioned above, the responseNB depends on how
spring 3 is stretched or compressed, i.e., on the displacement
z of plateA from its equilibrium. More precisely, the depen-
denceNB5NB(z) is given by

FIG. 4. Schematic picture of the setup: the two lateral springs
~acting as elastic rods! 1 and 2 are shown with thick solid lines.
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NB52H KR0V8~z2z1! if z<z1

0 if z.z1 ,
~A10!

wherez1 is the distance, by which spring 3 is pressed down
to get equilibrium due to the strain of spring 4 and weightA.

The next step is to determine the dependence of the coef-
ficient G on NB . It is reasonable to assume this dependence
to be of the exponential type. Then, according to Eq.~A10!,
we have

G~NB!5Ḡ0 exp~NB /L!5Ḡ0 exp@2V8~z2z1!/l̄ #,

~A11!

where l̄5L/KR0 is a dimensionless characteristic vertical
displacement of plateA. In the case, when springs 3 and 4
are harmonic@V(z)5z2/2#, the function~A11! is simplified
to

G~z!5G0 exp~2z/l̄ !, ~A12!

where the factor withz1 has been absorbed intoG0, resulting
in the exponential behavior against thez displacement@37#.
However, the dependence~A12! does not account for surface
corrugation, friction of rest, the disappearance of friction
when the displacementz of plate A up exceeds a certain
critical length, and other more sophisticated friction phenom-
ena@28#. Consequently, thez dependence should be modified
and, therefore, it is more realistically to use in our gadget a
rational function as follows:

G~z!5G03H ` if z<z2

~z12z!/~z2z2! if z2,z,z1

0 if z>z1 ,
~A13!

wherez2 is a critical value~friction at rest!, below which the
friction becomes infinite.

In the particular case of a sinusoidal forceFn(t) with a
frequencyv, the steady-state solution~trajectory or attractor!
of Eq. ~A5! is also a sinusoidal function with the amplitude
z0 being proportional to the force amplitudeF0 @38#. Next,
we denote the right-hand side of Eq.~A8! by f (t), so that in
this particular case,

f ~ t !5 f 0 sin~vt !, ~A14!

with f 05mz0v2, becomes an external force for plateB. Then
Eq. ~A8! can be rewritten in the form of Eq.~1!,

V̇1g~ f !s~V!/V5 f , ~A15!

where the dimensionless friction coefficientg is normalized
by g(0)[g05G0MB /M . Particularly, for exponential be-
havior ~A12!, we haveg( f )5g0 exp(2f/l) with l5mv2l̄
5mv2L/KR0.
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