50 research outputs found

    tRNA Modification and Genetic Code Variations in Animal Mitochondria

    Get PDF
    In animal mitochondria, six codons have been known as nonuniversal genetic codes, which vary in the course of animal evolution. They are UGA (termination codon in the universal genetic code changes to Trp codon in all animal mitochondria), AUA (Ile to Met in most metazoan mitochondria), AAA (Lys to Asn in echinoderm and some platyhelminth mitochondria), AGA/AGG (Arg to Ser in most invertebrate, Arg to Gly in tunicate, and Arg to termination in vertebrate mitochondria), and UAA (termination to Tyr in a planaria and a nematode mitochondria, but conclusive evidence is lacking in this case). We have elucidated that the anticodons of tRNAs deciphering these nonuniversal codons (tRNATrp for UGA, tRNAMet for AUA, tRNAAsn for AAA, and tRNASer and tRNAGly for AGA/AGG) are all modified; tRNATrp has 5-carboxymethylaminomethyluridine or 5-taurinomethyluridine, tRNAMet has 5-formylcytidine or 5-taurinomethyluridine, tRNASer has 7-methylguanosine and tRNAGly has 5-taurinomethyluridine in their anticodon wobble position, and tRNAAsn has pseudouridine in the anticodon second position. This review aims to clarify the structural relationship between these nonuniversal codons and the corresponding tRNA anticodons including modified nucleosides and to speculate on the possible mechanisms for explaining the evolutional changes of these nonuniversal codons in the course of animal evolution

    Mitochondria-specific RNA-modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs

    Get PDF
    Human mitochondrial (mt) tRNALys has a taurine-containing modified uridine, 5-taurinomethyl-2-thiouridine (Ļ„m5s2U), at its anticodon wobble position. We previously found that the mt tRNALys, carrying the A8344G mutation from cells of patients with myoclonus epilepsy associated with ragged-red fibers (MERRF), lacks the Ļ„m5s2U modification. Here we describe the identification and characterization of a tRNA-modifying enzyme MTU1 (mitochondrial tRNA-specific 2-thiouridylase 1) that is responsible for the 2-thiolation of the wobble position in human and yeast mt tRNAs. Disruption of the yeast MTU1 gene eliminated the 2-thio modification of mt tRNAs and impaired mitochondrial protein synthesis, which led to reduced respiratory activity. Furthermore, when MTO1 or MSS1, which are responsible for the C5 substituent of the modified uridine, was disrupted along with MTU1, a much more severe reduction in mitochondrial activity was observed. Thus, the C5 and 2-thio modifications act synergistically in promoting efficient cognate codon decoding. Partial inactivation of MTU1 in HeLa cells by small interference RNA also reduced their oxygen consumption and resulted in mitochondria with defective membrane potentials, which are similar phenotypic features observed in MERRF.This work was supported by grants-in-aid for scientific research on priority areas from the Ministry of Education, Science, Sports, and Culture of Japan, and by a grant from the New Energy and Industrial Technology Development Organization (to T. S.)

    Chemical synthesis of novel taurine-containing uridine derivatives

    Get PDF
    Recently, novel taurine-containing uridine derivatives were discovered in mammalian mitochondrial tRNAs, and these modified ribonucleosides existed at the first position of the anti-codon. This paper describes the chemical synthesis of these novel uridine derivatives, 5-taurinomethyluridine (Ļ„m5U) and 5-taurinomethyl-2-thiouridine (Ļ„m5s2U). These taurine-containing uridine derivatives were synthesized in the good yields by the reaction of the corresponding S-hydroxymethyluridine derivatives with taurine under basic conditions

    Mammalian Mitochondrial Methionyl-tRNA Transformylase from Bovine Liver: PURIFICATION, CHARACTERIZATION, AND GENE STRUCTURE

    Get PDF
    The mammalian mitochondrial methionyl-tRNA transformylase (MTFmt) was partially purified 2,200-fold from bovine liver mitochondria using column chromatography. The polypeptide responsible for MTFmt activity was excised from a sodium dodecyl sulfate-polyacrylamide gel and the amino acid sequences of several peptides were determined. The cDNA encoding bovine MTFmt was obtained and its nucleotide sequence was determined. The deduced amino acid sequence of the mature form of MTFmt consists of 357 amino acid residues. This sequence is about 30% identical to the corresponding Escherichia coli and yeast mitochondrial MTFs. Kinetic parameters governing the formylation of various tRNAs were obtained. Bovine MTFmt formylates its homologous mitochondrial methionyl-tRNA and the E. coli initiator methionyl-tRNA (Met-tRNAfMet) with essentially equal efficiency. The E. coli elongator methionyl-tRNA (Met-tRNAmMet) was also formylated although with somewhat less favorable kinetics. These results suggest that the substrate specificity of MTFmt is not as rigid as that of the E. coli MTF which clearly discriminates between the bacterial initiator and elongator Met-tRNAs. These observations are discussed in terms of the presence of a single tRNAMet gene in mammalian mitochondria

    Characterization and tRNA Recognition of Mammalian Mitochondrial Seryl-tRNA Synthetase

    Get PDF
    Animal mitochondrial protein synthesis systems contain two serine tRNAs (tRNAs(Ser)) corresponding to the codons AGY and UCN, each possessing an unusual secondary structure; the former lacks the entire D arm, and the latter has a slightly different cloverleaf structure. To elucidate whether these two tRNAs(Ser) can be recognized by the single animal mitochondrial seryl-tRNA synthetase (mt SerRS), we purified mt SerRS from bovine liver 2400-fold and showed that it can aminoacylate both of them. Specific interaction between mt SerRS and either of the tRNAs(Ser) was also observed in a gel retardation assay. cDNA cloning of bovine mt SerRS revealed that the deduced amino acid sequence of the enzyme contains 518 amino acid residues. The cDNAs of human and mouse mt SerRS were obtained by reverse transcription-polymerase chain reaction and expressed sequence tag data base searches. Elaborate inspection of primary sequences of mammalian mt SerRSs revealed diversity in the N-terminal domain responsible for tRNA recognition, indicating that the recognition mechanism of mammalian mt SerRS differs considerably from that of its prokaryotic counterpart. In addition, the human mt SerRS gene was found to be located on chromosome 19q13.1, to which the autosomal deafness locus DFNA4 is mapped

    Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system

    Get PDF
    Mitochondrial (mt) tRNAMet has the unusual modified nucleotide 5-formylcytidine (f5C) in the first position of the anticodon. This tRNA must translate both AUG and AUA as methionine. By constructing an in vitro translation system from bovine liver mitochondria, we examined the decoding properties of the native mt tRNAMet carrying f5C in the anticodon compared to a transcript that lacks the modification. The native mt Met-tRNA could recognize both AUA and AUG codons as Met, but the corresponding synthetic tRNAMet lacking f5C (anticodon CAU), recognized only the AUG codon in both the codon-dependent ribosomal binding and in vitro translation assays. Furthermore, the Escherichia coli elongator tRNAMetm with the anticodon ac4CAU (ac4C = 4-acetylcytidine) and the bovine cytoplasmic initiator tRNAMet (anticodon CAU) translated only the AUG codon for Met on mt ribosome. The codon recognition patterns of these tRNAs were the same on E. coli ribosomes. These results demonstrate that the f5C modification in mt tRNAMet plays a crucial role in decoding the nonuniversal AUA codon as Met, and that the genetic code variation is compensated by a change in the tRNA anticodon, not by a change in the ribosome. Base pairing models of f5C-G and f5C-A based on the chemical properties of f5C are presented
    corecore