75 research outputs found

    FernwÀrme klimaneutral transformieren

    Get PDF
    FERNWÄRME KLIMANEUTRAL TRANSFORMIEREN FernwĂ€rme klimaneutral transformieren / Dunkelberg, Elisa (Rights reserved) ( -

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Discrete Mono-, Di-, and Trinuclear Anions [MoOF5]−, [MoVOF5]2-, [MoO2F4]2-, [Mo2O2F9]−, [Mo3O3F13]−, and the Infinite Chain Anion [MoO2F3]− Obtained from Reactions of MoOF4

    No full text
    Funding Information: We would like to thank Solvay for the kind donations of F, Dr. Tambornino, Dr. Ivlev, and Dr. Conrad for helpful discussions, and the Deutsche Forschungsgemeinschaft for funding (KR3595/15-1). 2 Publisher Copyright: © 2023 American Chemical SocietyThe herein-reported oxyfluoridometallate salts were synthesized and structurally characterized during the studies of the Lewis acidity of MOF4 (M = Mo, W) with various fluoride ion donors (RbF, CsF, TlF, AgF, SrF2, BaF2, PbF2) in different solvents (aqHF 48%, aHF, BrF3, ClF3). Phase-pure MoOF4 was either synthesized by hydrolysis of MoF6 with SiO2 in anhydrous HF (aHF) or by reactions of BrF3 with MoO2 or MoO3, respectively. The compound was characterized by infrared and Raman spectroscopy, solid-state quantum-chemical calculations, as well as powder and single-crystal X-ray diffraction. MoOF4 reacted with PbF2 in aHF forming Pb[MoOF5]2, while under comparable conditions, WOF4 formed Pb3[WOF5]4F2, containing the [WOF5]− anion. Salts containing such [MoOF5]− anions were also directly obtained from reactions of BrF3, MoO3, and AF2 (A = Sr, Ba), while with AgF, the compound Ag[Mo2O2F9] was observed. ClF3 reacted with MoO3 to form [ClOF2][Mo3O3F13]. Carrying out similar reactions in aqueous HF (aqHF) in autoclaves under hydrofluorothermal conditions leads to O-richer compounds with the composition A[MoO2F4] (A = Sr, Ba). With RbF or Tl2(CO3), the compounds A[MoO2F3] (A = Rb, Tl) were obtained. With CsF reduction to Mo(V) occurred as Cs2[MoVOF5] was formed. We report on similarities and differences within the respective anions and within the crystal structures of these compounds.Peer reviewe

    Benchmarking and Functional Decomposition of Automotive Lidar Sensor Models

    Get PDF
    Simulation-based testing is seen as a major requirement for the safety validation of highly automated driving. One crucial part of such test architectures are models of environment perception sensors such as camera, lidar and radar sensors. Currently, an objective evaluation and the comparison of different modeling approaches for automotive lidar sensors are still a challenge. In this work, a real lidar sensor system used for object recognition is first functionally decomposed. The resulting sequence of processing blocks and interfaces is then mapped onto simulation methods. Subsequently, metrics applied to the aforementioned interfaces are derived, enabling a quantitative comparison between simulated and real sensor data at different steps of the processing pipeline. Benchmarks for several existing sensor models at a concrete selected interface are performed using those metrics by comparing them to measurements gained from the real sensor. Finally, we outline how metrics on low-level interfaces can correlate with results on more abstract ones. A major achievement of this work lies within the commonly accepted interfaces and a common understanding of real and virtual lidar sensor systems and, even more important, an initial guideline for the quantitative comparison of sensor models with the ambition to support future validation of virtual sensor models
    • 

    corecore