21 research outputs found

    Effect of a Range Ring and of Intruder Vertical Rate on Pilot Perception of Separation on a Cockpit Display of Traffic Information

    Get PDF
    This study was conducted to determine the effect of a range ring and intruder vertical rate on pilots’ perception of aircraft separation as viewed on a cockpit display of traffic information. A group of 30 pilots from Embry-Riddle Aeronautical University participated as subjects. SuperCard® Version 1.6 software and a Macintosh IIsi® personal computer were employed to generate the simulation of a cockpit display of traffic information. Each pilot monitored 80 unique scenarios in which they determined, as early as possible, what the vertical miss distance would be when a single intruder passed ownship. The pilots’ decision time and perceived vertical miss distances were compiled for each scenario. Range ring did not have a significant effect on the perception of vertical miss with regards to time or error while vertical rate had a significant effect on time and error. Exploratory research was also performed on miss distance and approach angle

    A multidisciplinary approach to structuring in reduced triacylglycerol based systems

    Get PDF
    This study (Wassell & Young 2007; Wassell et al., 2010a) shows that behenic (C22:0) fatty acid rich Monoacylglycerol (MAG), or its significant inclusion, has a pronounced effect on crystallisation (Wassell et al., 2010b; 2012; Young et al., 2008) and interfacial kinetics (3.0; 4.0). New interfacial measurements demonstrate an unusual surface-interactive relationship of long chain MAG compositions, with and without Polyglycerol Polyricinoleate (PGPR). A novel MAG synthesised from Moringa oleifera Triacylglycerol (TAG) influenced textural behaviour of water-in-oil (W/O) emulsions and anhydrous TAG systems (4.0: 5.0; 6.0). Emulsifier mixtures of PGPR and MAG rich in C18:1 / 18:2 and C16:0 / C18:0 do not decrease interfacial tension compared with PGPR alone. Only those containing MAG with significant proportion of C22:0 impacted interfacial behaviour. A mixture of C22:0 based MAG and PGPR results with decreasing tension from ~20°C and is initially dominated by PGPR, then through rearrangement, the surface is rapidly dominated by C22:0 fatty acids. A Moringa oleifera based MAG showed unusual decreased interfacial behaviour not dissimilar to PGPR. All other tested MAG (excluding a C22:0 based MAG), irrespective of fatty acid composition resulted with high interfacial tension values across the measured temperature spectrum (50°C to 5°C). A relative decrease of interfacial tension, with decreased temperature, was greater, the longer the chain length (Krog & Larsson 1992). Moreover, results from bulk and interfacial rheology showed that the presence of C22:0 based MAG has a pronounced effect on both elastic modulus (G’) and viscous modulus (G’’). Through a multidisciplinary approach, results were verified in relevant product applications. By means of ultrasonic velocity profiling with pressure difference (UVP-PD) technique, it was possible to examine the effect of a C22:0 based MAG in an anhydrous TAG system whilst in a dynamic non-isothermal condition (3.0). The non-invasive UVP-PD technique conclusively validated structural events. The application of a Moringa oleifera based MAG in low TAG (35% - 41%), W/O emulsions, results in high emulsion stability without a co-surfactant (PGPR). The bi-functional behaviour of Moringa oleifera based MAG is probably attributed to miscibility (Ueno et al., 1994) of its fatty acids, ranging ~30% of saturated fatty acids (SAFA), with ~70% of C18:1 (5.0). It is concluded that the surface-interactive behaviour of Moringa oleifera based MAG, is attributed to approximately 10% of its SAFA commencing from C20:0. When examined separately and compared, results showed that physical effect of a Moringa oleifera based MAG was not dissimilar to PGPR, influencing the crystallisation kinetics of the particular anhydrous TAG system. When either was combined with a C22:0 rich MAG, enhanced gelation onset and strong propensity to form dendrite structure occurred (5.0). Macrobeam and synchrotron radiation microbeam small angle x-ray diffraction (SR-μ-SAXD) was utilized (6.0) to assess behavior of C22:0 rich MAG, with and without PGPR (Wassell et al., 2012). The C22:0 based MAG combined with PGPR promoted TAG crystallisation as observed by differential scanning calorimetry (DSC). Polarised optical microscopy (POM) observations indicated that C22:0 based MAG eliminates formation of large crystal aggregates, resulting in the likely formation of tiny Pickering TAG / MAG crystals (6.0). It is concluded that the presence and interactive behaviour of Pickering surface-active MAG, is strongly linked to increased fatty acid chain length, which induce increased textural resilience owing to viscoelasticity (4.0; 5.0). A multidisciplinary approach was able to verify structuring behaviour (4.0; 5.0), using multiple analyses (Wassell et al., 2010b; 2012; Young et al., 2008). Novel structuring solutions in reduced TAG based systems have been provided (4.0; 5.0). This study both enhances current understanding of structuring in low TAG W/O emulsions and has led to novel MAG compositions, which address emulsification, structuring and texture in TAG based food systems (Wassell et al., 2010a; 2012a; 2012b; 2012c; 2012d; 2012e; Bech et al., 2013)

    Material Contact and Environmental Effects on Vitamin A Fortified Vegetable Frying Oil

    Get PDF
    Observations about the impact of environmental parameters and time, on fortified vegetable oil, using typical commercial grade linear low density polyethylene (LLDPE) packaging during typical shelf-life conditions, are minimal. We tested the long-term (12 months) impact of temperature and illuminance (light: 100 to 150 lux and darkness <1 lux) on refined bleached deodorized palm olein (RBDPOL), fortified with vitamin A, and without antioxidant. Results showed degradation of fortified RBDPOL with 70 ppm vitamin A was  approximately 19% at 18-22oC in Light, 18% at 18-22oC in Darkness, 38% at 32-33oC in light and 24% 32-33oC in darkness. A similar trend was observed at 45 ppm vitamin A. Exposure to both heat and light impacted vitamin A degradation, but was primarily attributed to prolonged exposure at elevated temperature, irrespective of the packaging material. This short study validates extensive research by Silalahi et al., (2017), doi:10.1111/ijfs.13462 on the impact of environmental effects of fortified vegetable frying oil, during extensive storage life periods

    Haptoglobin phenotype is not a predictor of recurrence free survival in high-risk primary breast cancer patients

    Get PDF
    Contains fulltext : 70104tjan-heijnen.pdf (publisher's version ) (Open Access)BACKGROUND: Better breast cancer prognostication may improve selection of patients for adjuvant therapy. We conducted a retrospective follow-up study in which we investigated sera of high-risk primary breast cancer patients, to search for proteins predictive of recurrence free survival. METHODS: Two sample sets of high-risk primary breast cancer patients participating in a randomised national trial investigating the effectiveness of high-dose chemotherapy were analysed. Sera in set I (n = 63) were analysed by surface enhanced laser desorption ionisation time-of-flight mass spectrometry (SELDI-TOF MS) for biomarker finding. Initial results were validated by analysis of sample set II (n = 371), using one-dimensional gel-electrophoresis. RESULTS: In sample set I, the expression of a peak at mass-to-charge ratio 9198 (relative intensity 20), identified as haptoglobin (Hp) alpha-1 chain, was strongly associated with recurrence free survival (global Log-rank test; p = 0.0014). Haptoglobin is present in three distinct phenotypes (Hp 1-1, Hp 2-1, and Hp 2-2), of which only individuals with phenotype Hp 1-1 or Hp 2-1 express the haptoglobin alpha-1 chain. As the expression of the haptoglobin alpha-1 chain, determined by SELDI-TOF MS, corresponds to the phenotype, initial results were validated by haptoglobin phenotyping of the independent sample set II by native one-dimensional gel-electrophoresis. With the Hp 1-1 phenotype as the reference category, the univariate hazard ratio for recurrence was 0.87 (95% CI: 0.56 - 1.34, p = 0.5221) and 1.03 (95% CI: 0.65 - 1.64, p = 0.8966) for the Hp 2-1 and Hp 2-2 phenotypes, respectively, in sample set II. CONCLUSION: In contrast to our initial results, the haptoglobin phenotype was not identified as a predictor of recurrence free survival in high-risk primary breast cancer in our validation set. Our initial observation in the discovery set was probably the result of a type I error (i.e. false positive). This study illustrates the importance of validation in obtaining the true clinical applicability of a potential biomarker

    Margarines and spreads

    No full text
    This book chapter is not available through ChesterRep

    The Environmental effects on fortified palm olein in the Anthropocene

    No full text
    Until now, no literature exists to explain about the impact of time, and environmental parameters, when using typical commercial grade transparent linear low density polyethylene (LLDPE) packaging for protecting vegetable cooking oil during typical shelf-life conditions. We tested long-term impact of temperature and illuminance (light: 100 to 150 lux and darkness <1 lux) on refined bleached deodorized palm olein (RBDPOL), fortified with vitamin A. Results showed degradation of fortified RBDPOL with 70 ppm vitamin A was  approximately 15% at 18-22oC in Light, 10% at 18-22oC in Darkness, 19% at 32-33oC in light and 17% 32-33oC in darkness. Similar trend was observed at 45 ppm vitamin A. Exposure to heat and light impacted vitamin A degradation, but is primarily attributed to temperature, irrespective of packaging. This investigation builds on our previous work (Silalahi et al., 2017), and confirms the impact of challenging environmental conditions on vegetable cooking oil shelf-life over long time periods
    corecore