2,667 research outputs found

    Preliminary design characteristics of a subsonic business jet concept employing an aspect ratio 25 strut braced wing

    Get PDF
    The advantages of replacing the conventional wing on a transatlantic business jet with a larger, strut braced wing of aspect ratio 25 were evaluated. The lifting struts reduce both the induced drag and structural weight of the heavier, high aspect ratio wing. Compared to the conventional airplane, the strut braced wing design offers significantly higher lift to drag ratios achieved at higher lift coefficients and, consequently, a combination of lower speeds and higher altitudes. The strut braced wing airplane provides fuel savings with an attendant increase in construction costs

    Vitamin A potency of market milk

    Get PDF

    Preliminary design characteristics of a subsonic business jet concept employing laminar flow control

    Get PDF
    Aircraft configurations were developed with laminar flow control (LFC) and without LFC. The LFC configuration had approximately eleven percent less parasite drag and a seven percent increase in the maximum lift-to drag ratio. Although these aerodynamic advantages were partially offset by the additional weight of the LFC system, the LFC aircraft burned from six to eight percent less fuel for comparable missions. For the trans-atlantic design mission with the gross weight fixed, the LFC configuration would carry a greater payload for ten percent fuel per passenger mile

    Design of a large span-distributed load flying-wing cargo airplane with laminar flow control

    Get PDF
    A design study was conducted to add laminar flow control to a previously design span-distributed load airplane while maintaining constant range and payload. With laminar flow control applied to 100 percent of the wing and vertical tail chords, the empty weight increased by 4.2 percent, the drag decreased by 27.4 percent, the required engine thrust decreased by 14.8 percent, and the fuel consumption decreased by 21.8 percent. When laminar flow control was applied to a lesser extent of the chord (approximately 80 percent), the empty weight increased by 3.4 percent, the drag decreased by 20.0 percent, the required engine thrust decreased by 13.0 percent, and the fuel consumption decreased by 16.2 percent. In both cases the required take-off gross weight of the aircraft was less than the original turbulent aircraft

    Syntax for free: representing syntax with binding using parametricity

    Get PDF
    We show that, in a parametric model of polymorphism, the type ∀ α. ((α → α) → α) → (α → α → α) → α is isomorphic to closed de Bruijn terms. That is, the type of closed higher-order abstract syntax terms is isomorphic to a concrete representation. To demonstrate the proof we have constructed a model of parametric polymorphism inside the Coq proof assistant. The proof of the theorem requires parametricity over Kripke relations. We also investigate some variants of this representation

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Pre–post intervention exploring cognitive function and relationships with weight loss, intervention adherence and dropout

    Get PDF
    Objective: To evaluate the association between baseline cognitive function, intervention dropout, adherence and 3-month weight loss (WL) when controlling for confounding demographic variables. Methods: 107 (Mage = 40.9 yrs.), BMI in the overweight and obese range (BMI = 35.6 kg/m2), men (N = 17) and women (N = 90) completed a 3-month WL intervention. Participants attended weekly behavioral sessions, comply with a reduced calorie diet, and complete 100 min of physical activity (PA)/wk. Cognitive function tasks at baseline included Flanker (attention), Stroop (executive control) and working memory, demographics, body weight and cardiovascular fitness were assessed at baseline. Session attendance, adherence to PA and diet were recorded weekly. Results: Baseline attention was positively correlated with age (p \u3c .05), education (p \u3c .05), attendance (p \u3c .05), diet (p \u3c .05) and PA (p \u3c .05). Baseline executive control (p \u3c .05) and working memory (p \u3c .05) were each associated with % WL. Baseline executive control (p \u3c .01) and working memory (p \u3c .001) were also each associated with education. ANOVA indicated that baseline attention (p \u3c .01) was associated with WL, specifically for comparing those who achieved 5–10% WL (p \u3c .01) and those who achieved greater than 10% WL (p \u3c .01) to those who dropped. Significance: Results suggest that stronger baseline attention is associated with completion of a 3-mo. WL intervention. Executive control and working memory are associated with amount of WL achieved. NCT registration: US NIH Clinical Trials, NCT0166471

    Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast

    Get PDF
    A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages

    Maternal Choline Supplementation Mitigates Alcohol-Induced Fetal Cranio-Facial Abnormalities Detected Using an Ultrasonographic Examination in A Sheep Model

    Get PDF
    Early detection of prenatal alcohol exposure is critical for designing and testing effectiveness of interventional therapeutics. Choline supplementation during and after prenatal alcohol exposure has shown promising benefits in improving outcomes in rodent models and clinical studies. A sheep model of first trimester-equivalent binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Pregnant sheep were randomly assigned to six groups: Saline+Placebo control, Saline+Choline, binge Alcohol+Placebo (light binging), binge Alcohol+Choline, Heavy binge Alcohol+Placebo (heavy binging) and Heavy binge Alcohol+Choline. Ewes received intravenous alcohol or saline on three consecutive days per week from gestational day (GD) 4 to 41 to mimic first trimester-equivalent weekend binge drinking paradigm. Choline (10 mg/kg in the daily food ration) was administered from GD 4 until term. On GD 76, 11 fetal ultrasonographic measurements were collected transabdominally. Heavy binge alcohol exposure reduced fetal Frontothalamic Distance (FTD), Mean Orbital Diameter (MOD) and Mean Lens Diameter (MLD) and increased Interorbital Distance (IOD) and Thalamic Width (TW). Maternal choline supplementation mitigated most of these alcohol-induced effects. Maternal choline supplementation also improved overall fetal femur and humerus bone lengths compared to their respective placebo groups. Taken together these results indicate a potential dose dependent effect that could impact the sensitivity of these ultrasonographic measures in predicting prenatal alcohol exposure. This is the first study in the sheep model to identify biomarkers of prenatal alcohol exposure in-utero with ultrasound and co-administration of maternal choline supplementation
    • …
    corecore