342 research outputs found

    Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system

    Get PDF
    The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined

    Search for eta-mesic Helium with the WASA-at-COSY detector

    Full text link
    A search for the 4He-eta bound state via exclusive measurement of the excitation function for the dd->3Heppi- reaction, was performed at the Cooler Synchrotron COSY-Juelich with the WASA-at-COSY detection system. The data were taken during a slow acceleration of the beam from 2.185 GeV/c to 2.400 GeV/c crossing the kinematic threshold for the eta production in the dd -> 4He-eta reaction at 2.336 GeV/c. The corresponding excess energy in the 4He-eta system varied from -51.4 MeV to 22 MeV. The shape of the excitation function for the dd -> 3Heppi- was examined. No signal of the 4He-eta bound state was observed in the excitation function.Comment: 4 pages, 5 figures, to appear in proceedings of MESON201

    Event Reconstruction for a DIRC

    Get PDF
    Monte Carlo simulations were made for a possible DIRC at the WASA detector at COSY. A statistical method for pattern recognition is presented and the possible angle resolution and velocity precision achieved are discussed.Comment: Minor changes in text. Figures updated. accepted by JINS

    Tests of the fundamental symmetries in eta meson decays

    Full text link
    Patterns of chiral symmetry violation and tests of the conservation of the fundamental C, P and CP symmetries are key physics issues in studies of the pi0, eta and eta' meson decays. These tests include searches for rare or forbidden decays and searches for asymmetries among the decay products in the not-so-rare decays. Some examples for the rare decays are eta-->2pi, eta-->4pi0 (CP tests), decays into an odd number of photons (e.g., eta-->3g) and the decay eta-->pi0e+e- (C tests). The experimental studies of the pi0, eta and eta' meson decays are carried out at four European accelerator research facilities: KLOE/KLOE-2 at DAFNE (Frascati), Crystal Ball at MAMI (Mainz), WASA at COSY (J\"ulich), Crystal Barrel at ELSA (Bonn).Comment: 9 pages, 2 figures, proceedings of Symposium on Prospects in the Physics of Discrete Symmetries, DISCRETE 2010, 6 - 11 December, Rome; v2: added reference

    Copper and nanostructured anatase rutile and carbon coatings induce adaptive antibiotic resistance

    Get PDF
    Contaminated surfaces are vehicles for the spread of infectious disease-causing microorganisms. A strategy to prevent their spread is applying antimicrobial coatings to surfaces. Both nanostructured anatase rutile and carbon (NsARC), a TiO₂ formulation, and copper are examples of antimicrobial agents that are used in making or coating door handles and similar surfaces, to reduce microbial loads. Antimicrobial surfaces have been extensively tested for antimicrobial activity but not sublethal effects, such as exposure-associated multiple antibiotic resistance phenotypes usually caused by induction of efflux pump genes. The possibility of NsARC and copper inducing indicative efflux pump pathways was investigated by monitoring the expression of mScarlet fluorescent protein (FP) in two reporter strains of Escherichia coli. There was an increase in the expression of FP in the reporter strains exposed to NsARC and copper relative to the inert control composed of stainless steel. Furthermore we tested E. coli and Staphylococcus aureus following 8 h of exposure to NsARC for changes in resistance to selected antibiotics. E. coli that were exposed to NsARC became more susceptible to kanamycin but there was no significant change in susceptibility of S. aureus to any tested antibiotics. These findings suggests that even though NsARC and copper are antimicrobial, they also have some potential to cause unintended phenotypes

    Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    Get PDF
    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies

    Chiral perturbation theory calculation for pn -> dpipi at threshold

    Get PDF
    We investigate the reaction pn -> dpipi in the framework of Chiral Perturbation Theory. For the first time a complete calculation of the leading order contributions is presented. We identify various diagrams that are of equal importance as compared to those recognized in earlier works. The diagrams at leading order behave as expected by the power counting. Also for the first time the nucleon-nucleon interaction in the initial, intermediate and final state is included consistently and found to be very important. This study provides a theoretical basis for a controlled evaluation of the non-resonant contributions in two-pion production reactions in nucleon-nucleon collisions.Comment: 24 pages, 3 figures, 3 table

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure
    corecore