8 research outputs found

    Operationalizing marketable blue carbon

    Get PDF
    The global carbon sequestration and avoided emissions potentially achieved via blue carbon is high (∌3% of annual global greenhouse gas emissions); however, it is limited by multidisciplinary and interacting uncertainties spanning the social, governance, financial, and technological dimensions. We compiled a transdisciplinary team of experts to elucidate these challenges and identify a way forward. Key actions to enhance blue carbon as a natural climate solution include improving policy and legal arrangements to ensure equitable sharing of benefits; improving stewardship by incorporating indigenous knowledge and values; clarifying property rights; improving financial approaches and accounting tools to incorporate co-benefits; developing technological solutions for measuring blue carbon sequestration at low cost; and resolving knowledge gaps regarding blue carbon cycles. Implementing these actions and operationalizing blue carbon will achieve measurable changes to atmospheric greenhouse gas concentrations, provide multiple co-benefits, and address national obligations associated with international agreements

    Trends in the application of remote sensing in blue carbon science

    No full text
    Abstract Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are increasingly recognized as natural climate solutions. Evaluating the current extent, losses, and gains of BCEs is crucial to estimating greenhouse gas emissions and supporting policymaking. Remote sensing approaches are uniquely suited to assess the factors driving BCEs dynamics and their impacts at various spatial and temporal scales. Here, we explored trends in the application of remote sensing in blue carbon science. We used bibliometric analysis to assess 2193 published papers for changes in research focus over time (1990 – June 2022). Over the past three decades, publications have steadily increased, with an annual growth rate of 16.9%. Most publications focused on mangrove ecosystems and used the optical spaceborne Landsat mission, presumably due to its long‐term, open‐access archives. Recent technologies such as LiDAR, UAVs, and acoustic sensors have enabled fine‐scale mapping and monitoring of BCEs. Dominant research topics were related to mapping and monitoring natural and human impacts on BCEs, estimating vegetation and biophysical parameters, machine and deep learning algorithms, management (including conservation and restoration), and climate research. Based on corresponding author affiliations, 80 countries contributed to the field, with United States (27.2%), China (15.0%), Australia (7.5%), and India (6.0%) holding leading positions. Overall, our results reveal the need to increase research efforts for seagrasses, saltmarshes, and macroalgae, integrate technologies, increase the use of remote sensing to support carbon accounting methodologies and crediting schemes, and strengthen collaboration and resource sharing among countries. Rapid advances in remote sensing technology and decreased image acquisition and processing costs will likely enhance research and management efforts focused on BCEs

    DataSheet_1_Seagrasses produce most of the soil blue carbon in three Maldivian islands.csv

    No full text
    Blue carbon is fast garnering international interest for its disproportionate contribution to global carbon stocks. However, our understanding of the size of these blue carbon stocks, as well as the provenance of carbon that is stored within them, is still poor. This is especially pertinent for many small-island nations that may have substantial blue carbon ecosystems that are poorly studied. Here, we present a preliminary assessment of blue carbon from three islands in the Maldives. The higher purpose of this research was to assess the feasibility of using blue carbon to help offset carbon emissions associated with Maldivian tourism, the largest Maldivian industry with one of the highest destination-based carbon footprints, globally. We used stable isotope mixing models to identify how habitats contributed to carbon found in sediments, and Loss on Ignition (LoI) to determine carbon content. We found that for the three surveyed islands, seagrasses (Thalassia hemprichii, Thalassodendron ciliatum, Halodule pinofilia, Syringodium isoetifolium, and Cymodocea rotundata) were the main contributors to sediment blue carbon (55 – 72%) while mangroves had the lowest contribution (9 – 44%). Surprisingly, screw pine (Pandanus spp.), a relative of palm trees found across many of these islands, contributed over a quarter of the carbon found in sediments. Organic carbon content (‘blue carbon’) was 6.8 ± 0.3 SE % and 393 ± 29 tonnes ha-1 for mangrove soils, and 2.5 ± 0.2% and 167 ± 20 tonnes ha-1 for seagrasses, which is slightly higher than global averages. While preliminary, our results highlight the importance of seagrasses as carbon sources in Maldivian blue carbon ecosystems, and the possible role that palms such as screw pines may have in supplementing this. Further research on Maldivian blue carbon ecosystems is needed to: 1) map current ecosystem extent and opportunities for additionality through conservation and restoration; 2) determine carbon sequestration rates; and 3) investigate options and feasibility for tourism-related blue carbon crediting. Overall, the opportunity for blue carbon in the Maldives is promising, but the state of knowledge is very limited.</p

    DataSheet_3_Seagrasses produce most of the soil blue carbon in three Maldivian islands.csv

    No full text
    Blue carbon is fast garnering international interest for its disproportionate contribution to global carbon stocks. However, our understanding of the size of these blue carbon stocks, as well as the provenance of carbon that is stored within them, is still poor. This is especially pertinent for many small-island nations that may have substantial blue carbon ecosystems that are poorly studied. Here, we present a preliminary assessment of blue carbon from three islands in the Maldives. The higher purpose of this research was to assess the feasibility of using blue carbon to help offset carbon emissions associated with Maldivian tourism, the largest Maldivian industry with one of the highest destination-based carbon footprints, globally. We used stable isotope mixing models to identify how habitats contributed to carbon found in sediments, and Loss on Ignition (LoI) to determine carbon content. We found that for the three surveyed islands, seagrasses (Thalassia hemprichii, Thalassodendron ciliatum, Halodule pinofilia, Syringodium isoetifolium, and Cymodocea rotundata) were the main contributors to sediment blue carbon (55 – 72%) while mangroves had the lowest contribution (9 – 44%). Surprisingly, screw pine (Pandanus spp.), a relative of palm trees found across many of these islands, contributed over a quarter of the carbon found in sediments. Organic carbon content (‘blue carbon’) was 6.8 ± 0.3 SE % and 393 ± 29 tonnes ha-1 for mangrove soils, and 2.5 ± 0.2% and 167 ± 20 tonnes ha-1 for seagrasses, which is slightly higher than global averages. While preliminary, our results highlight the importance of seagrasses as carbon sources in Maldivian blue carbon ecosystems, and the possible role that palms such as screw pines may have in supplementing this. Further research on Maldivian blue carbon ecosystems is needed to: 1) map current ecosystem extent and opportunities for additionality through conservation and restoration; 2) determine carbon sequestration rates; and 3) investigate options and feasibility for tourism-related blue carbon crediting. Overall, the opportunity for blue carbon in the Maldives is promising, but the state of knowledge is very limited.</p

    DataSheet_2_Seagrasses produce most of the soil blue carbon in three Maldivian islands.csv

    No full text
    Blue carbon is fast garnering international interest for its disproportionate contribution to global carbon stocks. However, our understanding of the size of these blue carbon stocks, as well as the provenance of carbon that is stored within them, is still poor. This is especially pertinent for many small-island nations that may have substantial blue carbon ecosystems that are poorly studied. Here, we present a preliminary assessment of blue carbon from three islands in the Maldives. The higher purpose of this research was to assess the feasibility of using blue carbon to help offset carbon emissions associated with Maldivian tourism, the largest Maldivian industry with one of the highest destination-based carbon footprints, globally. We used stable isotope mixing models to identify how habitats contributed to carbon found in sediments, and Loss on Ignition (LoI) to determine carbon content. We found that for the three surveyed islands, seagrasses (Thalassia hemprichii, Thalassodendron ciliatum, Halodule pinofilia, Syringodium isoetifolium, and Cymodocea rotundata) were the main contributors to sediment blue carbon (55 – 72%) while mangroves had the lowest contribution (9 – 44%). Surprisingly, screw pine (Pandanus spp.), a relative of palm trees found across many of these islands, contributed over a quarter of the carbon found in sediments. Organic carbon content (‘blue carbon’) was 6.8 ± 0.3 SE % and 393 ± 29 tonnes ha-1 for mangrove soils, and 2.5 ± 0.2% and 167 ± 20 tonnes ha-1 for seagrasses, which is slightly higher than global averages. While preliminary, our results highlight the importance of seagrasses as carbon sources in Maldivian blue carbon ecosystems, and the possible role that palms such as screw pines may have in supplementing this. Further research on Maldivian blue carbon ecosystems is needed to: 1) map current ecosystem extent and opportunities for additionality through conservation and restoration; 2) determine carbon sequestration rates; and 3) investigate options and feasibility for tourism-related blue carbon crediting. Overall, the opportunity for blue carbon in the Maldives is promising, but the state of knowledge is very limited.</p

    Database for marine and coastal restoration projects in Australia and New Zealand

    No full text
    The United Nations has declared 2021–2030 as the Decade on Ecosystem Restoration and the Decade of Ocean Science for Sustainable Development. These declarations emphasise the importance of restoring degraded marine and coastal ecosystems and supporting research and knowledge. The number and scale of marine and coastal restoration projects have been increasing in Australia and New Zealand over the past 40 years. However, the lack of a central repository of projects and their results limits opportunities to share knowledge to improve effectiveness. To address this gap, we developed the Australian and New Zealand Marine and Coastal Restoration Database. Information for this database was gathered from publicly available documents (peer-reviewed journal articles and technical reports) and discussions with key organisations that lead projects in Australia and New Zealand. For each project, we recorded the start date, duration, spatial scale, location, details on monitoring, and success criteria. The database includes information up until 1 June 2020. It is available online via the Australian Coastal Restoration Network website

    Operationalizing marketable blue carbon

    No full text
    The global carbon sequestration and avoided emissions potentially achieved via blue carbon is high (∌3% of annual global greenhouse gas emissions); however, it is limited by multidisciplinary and interacting uncertainties spanning the social, governance, financial, and technological dimensions. We compiled a transdisciplinary team of experts to elucidate these challenges and identify a way forward. Key actions to enhance blue carbon as a natural climate solution include improving policy and legal arrangements to ensure equitable sharing of benefits; improving stewardship by incorporating indigenous knowledge and values; clarifying property rights; improving financial approaches and accounting tools to incorporate co-benefits; developing technological solutions for measuring blue carbon sequestration at low cost; and resolving knowledge gaps regarding blue carbon cycles. Implementing these actions and operationalizing blue carbon will achieve measurable changes to atmospheric greenhouse gas concentrations, provide multiple co-benefits, and address national obligations associated with international agreements
    corecore