27 research outputs found

    Myelin Detection Using Rapid Quantitative MR Imaging Correlated to Macroscopically Registered Luxol Fast Blue-Stained Brain Specimens.

    No full text
    BACKGROUND AND PURPOSE Myelin detection is of great value in monitoring diseases such as multiple sclerosis and dementia. However, most MR imaging methods to measure myelin are challenging for routine clinical use. Recently, a novel method was published, in which the presence of myelin is inferred by using its effect on the intra- and extracellular water relaxation rates and proton density, observable by rapid quantitative MR imaging. The purpose of this work was to validate this method further on the brains of 12 fresh, intact cadavers. MATERIALS AND METHODS The 12 brains were scanned with a quantification sequence to determine the longitudinal and transverse relaxation rates and proton density as input for the myelin estimations. Subsequently, the brains were excised at postmortem examination, and brain slices were stained with Luxol fast blue to verify the presence of myelin. The optical density values of photographs of the stained brain slices were registered with the MR images and correlated with the myelin estimation performed by quantitative MR imaging. RESULTS A correlation was found between the 2 methods with a mean Spearman ρ for all subjects of 0.74 ± 0.11. Linear regression showed a mean intercept of 1.50% ± 2.84% and a mean slope of 4.37% ± 1.73%/%. A lower correlation was found for the separate longitudinal relaxation rates and proton density (ρ = 0.63 ± 0.12 and -0.73 ± 0.09, respectively). For transverse relaxation rates, the ρ was very low (0.11 ± 0.28). CONCLUSIONS The observed correlation supports the validity of myelin measurement by using the MR imaging quantification method

    Two-channel competition of autoionizing Rydberg states in an electric field

    No full text
    We present experimental data on the decay of xenon Stark states converging to the upper spin limit. In an electric field the Rydberg electron has two qualitatively different decay paths. If the electron changes the core state from the upper spin state into the lower spin state, it gains sufficient energy to escape the ionic core and autoionizes. Moreover, if the electronic state is above the saddle point, created by the electric field, it can field ionize. The probability to autoionize is nearly constant around the saddle point whereas the probability to field ionize rapidly increases above the saddle point. With the velocity map imaging technique we monitor both ionization channels as a function of ͑increasing͒ photoexcitation energy. We observe that the field ionization channel dominates the competition and gains yield at the expense of the autoionization channel. The spectra are explained both with full quantum calculations and with a relatively simple description for the overall behavior. These experiments show that the field ionization can be used in general as a clock for total core-dependent decay

    Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema

    No full text
    Malignant gliomas are primary brain tumours with an infiltrative growth pattern, often with contrast enhancement on magnetic resonance imaging (MRI). However, it is well known that tumour infiltration extends beyond the visible contrast enhancement. The aim of this study was to investigate if there is contrast enhancement not detected visually in the peritumoral oedema of malignant gliomas by using relaxometry with synthetic MRI. 25 patients who had brain tumours with a radiological appearance of malignant glioma were prospectively included. A quantitative MR-sequence measuring longitudinal relaxation (R1), transverse relaxation (R2) and proton density (PD), was added to the standard MRI protocol before surgery. Five patients were excluded, and in 20 patients, synthetic MR images were created from the quantitative scans. Manual regions of interest (ROIs) outlined the visibly contrast-enhancing border of the tumours and the peritumoral area. Contrast enhancement was quantified by subtraction of native images from post GD-images, creating an R1-difference-map. The quantitative R1-difference-maps showed significant contrast enhancement in the peritumoral area (0.047) compared to normal appearing white matter (0.032), p = 0.048. Relaxometry detects contrast enhancement in the peritumoral area of malignant gliomas. This could represent infiltrative tumour growth

    Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    Full text link
    OBJECTIVE: To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. MATERIALS AND METHODS: Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. RESULTS: Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. CONCLUSION: pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy
    corecore