46 research outputs found

    First steps towards a stable neon compound: observation and bonding analysis of [B 12 (CN) 11 Ne] −

    Get PDF
    Noble gas (Ng) containing molecular anions are much scarcer than Ng containing cations. No neon containing anion has been reported so far. Here, the experimental observation of the molecular anion [B12(CN)11Ne]− and a theoretical analysis of the boron–neon bond is reported

    Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO2

    Get PDF
    Verifying anthropogenic carbon dioxide (CO2_{2}) emissions globally is essential to inform about the progress of institutional efforts to mitigate anthropogenic climate forcing. To monitor localized emission sources, spectroscopic satellite sensors have been proposed that operate on the CO2_{2} absorption bands in the shortwave-infrared (SWIR) spectral range with ground resolution as fine as a few tens of meters to about a hundred meters. When designing such sensors, fine ground resolution requires a trade-off towards coarse spectral resolution in order to achieve sufficient noise performance. Since fine ground resolution also implies limited ground coverage, such sensors are envisioned to fly in fleets of satellites, requiring low-cost and simple design, e.g., by restricting the spectrometer to a single spectral band. Here, we use measurements of the Greenhouse Gases Observing Satellite (GOSAT) to evaluate the spectral resolution and spectral band selection of a prospective satellite sensor with fine ground resolution. To this end, we degrade GOSAT SWIR spectra of the CO2_{2} bands at 1.6 (SWIR-1) and 2.0 ÎŒm (SWIR-2) to coarse spectral resolution, without a further addition of noise, and we evaluate single-band retrievals of the column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}) by comparison to ground truth provided by the Total Carbon Column Observing Network (TCCON) and by comparison to global “native” GOSAT retrievals with native spectral resolution and spectral band selection. Coarsening spectral resolution from GOSAT’s native resolving power of > 20000 to the range of 700 to a few thousand makes the scatter of differences between the SWIR-1 and SWIR-2 retrievals and TCCON increase moderately. For resolving powers of 1200 (SWIR-1) and 1600 (SWIR-2), the scatter increases from 2.4 (native) to 3.0 ppm for SWIR-1 and 3.3 ppm for SWIR-2. Coarser spectral resolution yields only marginally worse performance than the native GOSAT configuration in terms of station-to-station variability and geophysical parameter correlations for the GOSAT–TCCON differences. Comparing the SWIR-1 and SWIR-2 configurations to native GOSAT retrievals on the global scale, however, reveals that the coarseresolution SWIR-1 and SWIR-2 configurations suffer from some spurious correlations with geophysical parameters that characterize the light-scattering properties of the scene such as particle amount, size, height and surface albedo. Overall, the SWIR-1 and SWIR-2 configurations with resolving powers of 1200 and 1600 show promising performance for future sensor design in terms of random error sources while residual errors induced by light scattering along the light path need to be investigated further. Due to the stronger CO2_{2} absorption bands in SWIR-2 than in SWIR-1, the former has the advantage that measurement noise propagates less into the retrieved XCO2_{2} and that some retrieval information on particle scattering properties is accessible

    Relative substituent orientation in the structure of cis-3-chloro-1,3-dimethyl-N-(4-nitrophenyl)-2-oxocyclopentane-1-carboxamide

    No full text
    The structure of the title compound, C14H15ClN2O4, prepared by reaction of a methacryloyl dimer with nitroaniline, was determined to establish the relative substituent orientation on the cyclopentanone ring. In agreement with an earlier proposed reaction mechanism, the amide group and the methyl group adjacent to the chloro substituent adopt equatorial positions and relative cis orientation, whereas the Cl substituent itself and the methyl group adjacent to the amide have axial orientations relative to the mean plane of the five-membered ring. The conformation of the molecule is stabilized by one classical N—H...O (2.18 Å) and one non-classical C—H...O (2.23 Å) hydrogen bond, each possessing an S(6) graph-set motif. The crystal packing is defined by several non-classical intramolecular hydrogen bonds, as well as by partial stacking of the aromatic rings

    Model Hemin Derivatives as a New Generation of Iron-based Nitric Oxide Scavengers

    No full text
    Nitric oxide plays multiple pathophysiological roles in breast cancer and regulates the apoptosis and migration of tumour cells according to its gradients. Hence, the modulation of its levels by selective scavenging can effectively treat the fast-growing triple-negative breast cancer (TNBC). Here, we report the modification and full characterization of the hemin (Fe(III)-protoporphyrin IX) structure to minimize the levels of its aggregation and protect against physiological oxidative degradation. The affinity of the final hemin conjugates towards ●NO was studied experimentally and theoretically using quantum mechanics calculations with the further testing of the downstream effects on TNBC cell migration. These compounds represent model hemin derivatives, which showed differential binding to ●NO with different levels of resistance towards the oxidative degradation and aggregation. Moreover, that was accompanied by their efficiency at stopping the ●NO-induced migration of cells, suggesting the promising application of some of them for the further treatment of TNBC
    corecore