128 research outputs found

    Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    Get PDF
    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff ) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OPFTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg-1/, acetic acid (2.41 g kg-1/, nitrous acid (HONO, 0.61 g kg-1/, and other trace gases such as glycolaldehyde (0.90 g kg-1/ and formic acid (0.36 g kg-1/ are signific-1ant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg-1, an SSA of ~0.91, and an AAE of ~3.50, with the latter implying that about 86% of the aerosol absorption at 401 nm is due to BrC

    First steps towards a stable neon compound: observation and bonding analysis of [B 12 (CN) 11 Ne] −

    Get PDF
    Noble gas (Ng) containing molecular anions are much scarcer than Ng containing cations. No neon containing anion has been reported so far. Here, the experimental observation of the molecular anion [B12(CN)11Ne]− and a theoretical analysis of the boron–neon bond is reported

    Isotopic characterization of nitrogen oxides (NO\u3ci\u3ex\u3c/i\u3e), nitrous acid (HONO), and nitrate (\u3ci\u3ep\u3c/i\u3eNO3-) from laboratory biomass burning during FIREX

    Get PDF
    New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx D NOCNO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNO3 ), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-timeresolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavityenhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF)

    Isotopic characterization of nitrogen oxides (NOx), nitrous acid (HONO), and nitrate (pNO3−) from laboratory biomass burning during FIREX

    Get PDF
    New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx=NO+NO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNO−3), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). In 20 “stack” fires (direct emission within ∼5 s of production by the fire) that burned various biomass materials from the western US, δ15N–NOx ranges from −4.3 ‰ to +7.0 ‰, falling near the middle of the range reported in previous work. The first measurements of δ15N–HONO and δ18O–HONO in biomass burning smoke reveal a range of −5.3 ‰ to +5.8 ‰ and +5.2 ‰ to +15.2 ‰, respectively. Both HONO and NOx are sourced from N in the biomass fuel, and δ15N–HONO and δ15N–NOx are strongly correlated (R2=0.89, p\u3c0.001), suggesting HONO is directly formed via subsequent chain reactions of NOx emitted from biomass combustion. Only 5 of 20 pNO−3 samples had a sufficient amount for isotopic analysis and showed δ15N and δ18O of pNO−3 ranging from −10.6 ‰ to −7.4 ‰ and +11.5 ‰ to +14.8 ‰, respectively. Our δ15N of NOx, HONO, and pNO−3 ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The δ18O of HONO and NO−3 obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The δ18O values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes

    Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Get PDF
    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg(-1) and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 +/- 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California

    Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Get PDF
    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr Combining double low line all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NOĝ\u27O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98ĝ€±ĝ€10ĝ€% efficiency for 100-600ĝ€nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument\u27s platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5ĝ€μm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the electrospray ionization source of a quadrupole mass spectrometer (PILS-ESI/MS) sampling in the negative-ion mode. We obtain excellent correlations (R2ĝ€Combining double low line 0.99) of particle mass measured as Nr with PILS-ESI/MS measurements converted to the corresponding particle anion mass (e.g., nitrate, sulfate, and chloride). The Nr and PILS-ESI/MS are shown to agree to within ĝ1/4ĝ€6ĝ€% for particle mass loadings of up to 120ĝ€μgĝ€mĝ\u273. Consideration of all the sources of error in the PILS-ESI/MS technique yields an overall uncertainty of ±20ĝ€% for these single-component particle streams. These results demonstrate the Nr system is a reliable direct particle mass measurement technique that differs from other particle instrument calibration techniques that rely on knowledge of particle size, shape, density, and refractive index
    corecore