997 research outputs found

    Shaping the future for primary care education and training project. Finding the evidence for education & training to deliver integrated health and social care: the primary care workforce perspective

    Get PDF
    This report is one of a series of outputs from the Shaping the Future in Primary Care Education and Training project (www.pcet.org.uk) funded by the North West Development Agency (NWDA). It is the result of a collaborative initiative between the NWDA, the North West Universities Association and seven Higher Education Institutions in the North West of England. The report presents an evidence base drawn from the analysis of the experiences and aspirations of integrated health and social care, as reported by members of the current primary health and social care workforce working in or with Primary Care Trusts (PCTs) in the North West region

    Preliminary studies of electromagnetic sounding of cometary nuclei

    Get PDF
    The internal structure of a comet could be determined with a spacecraft borne electromagnetic sounder. A dielectric profile of the comet could be produced in direct analogy with terrestrial glacier and ice sheet sounding experiments. This profile would allow the detection of a rocky core or ice layers if they exist, just as layers in the ice and the bedrock interface have been clearly observed through the Greenland ice sheet. It would also provide a gross estimate of the amount of dust in the icy region. Models for the response of the nucleus and cometary plasma to electromagnetic sounding are developed and used to derive experimental parameters. A point system design was completed. Preliminary engineering study results indicate that the sounder is well within the bounds of current space technology

    Post-Pandemic, Translational Research, and Indigenous Communities

    Get PDF
    It is well documented that American Indian/Alaska Native/Native Hawaiian/First Nations, known as Indigenous Peoples, have among the most significant health disparities in the world. Clinical services for these populations are typically underfunded, and Indigenous Peoples often have preexisting and co-occurring health conditions. These factors combined with a multitude of social inequities make Indigenous communities extremely susceptible to infectious diseases, including COVID- 19. This paper discusses perspectives on the post-pandemic frameworks and policies toward translational science as an approach to advance health promotion for community-based interventions, dissemination, and sustainability. The importance of exercising Indigenous self-determination, public health authority, and population health sovereignty is emphasized

    Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    Get PDF
    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes

    From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.

    Get PDF
    Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry

    Interactions among multiple stressors vary with exposure duration and biological response

    Get PDF
    Coastal ecosystems are exposed to multiple anthropogenic stressors. Effective management actions would be better informed from generalized predictions of the individual, combined and interactive effects of multiple stressors; however, few generalities are shared across different meta-analyses. Using an experimental study, we present an approach for analysing regression-based designs with generalized additive models that allowed us to capture nonlinear effects of exposure duration and stressor intensity and access interactions among stressors. We tested the approach on a globally distributed marine diatom, using 72 h photosynthesis and growth assays to quantify the individual and combined effects of three common water quality stressors; photosystem II-inhibiting herbicide exposure, dissolved inorganic nitrogen (DIN) enrichment and reduced light (due to excess suspended sediment). Exposure to DIN and reduced light generally resulted in additivity, while exposure to diuron and reduced light resulted in additive, antagonistic or synergistic interactions, depending on the stressor intensity, exposure period and biological response. We thus find the context of experimental studies to be a primary driver of interactions. The experimental and modelling approaches used here bridge the gap between two-way designs and regression-based studies, which provides a way forward to identify generalities in multiple stressor interactions
    • …
    corecore