27 research outputs found

    A theoretical and experimental study of unsteady flow processes in a Ludweig tube wind tunnel

    Get PDF
    Theoretical and experimental study of unsteady flow processes in Ludwieg tube wind tunnel

    STUDIES ON ABLATION OF OBJECTS TRAVERSING AN ATMOSPHERE

    Get PDF
    Ablation-type thermal protection of objects traversing an atmosphere - earth and mar

    Space shuttle: Heat transfer rate measurements on Convair booster (B-15B-2) at nominal Mach number of 8

    Get PDF
    Plotted and tabulated data on heat transfer from a thin-skin thermocouple are presented. The data is representative of the reentry event of the booster alone configuration. The data were generated during wind tunnel tests of the B-15B-2 delta wing booster at Mach 8. Thermocouple measurements are reduced to heat transfer coefficient ratio and the data are presented as plotted variations versus longitudinal, lateral, and vertical local model positions

    Ascent heat transfer rate distribution on the North American Rockwell delta wing orbiter and the General Dynamics/Convair booster at a Mach number of 8 (mated)

    Get PDF
    A wind tunnel test program to determine aerodynamic interference heating on the North American Rockwell orbiter mated with the General Dynamics Convair booster is discussed. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). The test period was June 1971. Heat-transfer rates were determined by the phase-change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were: Mach 8, free-stream unit length Reynolds numbers of 1.25 x one million and 2.55 x one million angles of attack of -5, 0, +5 deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented

    Space shuttle: Heat transfer rate measurements on Convair booster (B-15B-2) and North American Rockwell orbiter (161B) at nominal Mach number of 8

    Get PDF
    Plotted and tabulated data from the thin-skin thermocouple phase of an experimental test program are presented. These data are representative of three events of simulated flight and are described as booster-orbiter ascent heating data, booster reentry heating data, and orbiter reentry heating data. The test was conducted in a 50-inch hypersonic tunnel b at a nominal Mach number of 8 and free-stream Reynolds number range of 700,000 to 3,700,000 per foot. The model employed was a 0.009 scale replica of the Convair B-15B-2 booster and North American Rockwell 161B orbiter

    Heat transfer investigation of Langley Research Center transition models at a Mach number of 8, volume 2

    Get PDF
    The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique

    Heat transfer tests of the McDonnell-Douglas delta wing orbiter mated with -17A booster at Mach number 8

    Get PDF
    A wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell-Douglas configurations is reported. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). Heat-transfer rates were determined by the phase-change paint technique on 0.011-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, freestream unit Reynolds numbers of 0.8 x one million, 2.5 x one million, and 3.7 x one million, and angles of attack of -5 deg, 0 deg, +5deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented

    Surface pressure and inviscid flow field properties McDonnell-Douglas booster nominal Mach number of 8, volume 3

    Get PDF
    The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle booster configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 at angles of attack of 40 and 50 deg and at a free stream unit Reynolds number of 3.7 million per foot

    Heat transfer rate distribution on North American Rockwell delta wing orbiter determined by phase change paint technique at a Mach number of 8, volume 1

    Get PDF
    The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on an orbiter configuration are presented. Heat-transfer rates were determined by the phase change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers of 6.0 x 1 million and 8.9 x 1 million, and angles of attack from 10 to 50 deg in 10-deg increments. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described in the data presentation section
    corecore