37 research outputs found

    Stratospheric Intrusion-Influenced Ozone Air Quality Exceedances Investigated in the NASA MERRA-2 Reanalysis

    Get PDF
    Stratospheric intrusions have been the interest of decades of research for their ability to bring stratospheric ozone (O3) into the troposphere with the potential to enhance surface O3 concentrations. However, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly available high-resolution dataset (approx. 50 km) with assimilated O3 that characterizes O3 on the same spatiotemporal resolution as the meteorology. We demonstrate the science capabilities of the MERRA-2 reanalysis when applied to the evaluation of stratospheric intrusions that impact surface air quality. This is demonstrated through a case study analysis of stratospheric intrusion-influenced O3 exceedances in spring 2012 in Colorado, using a combination of observations, the MERRA-2 reanalysis and the Goddard Earth Observing System Model, Version 5 (GEOS-5) simulations

    Reanalysis intercomparisons of stratospheric polar processing diagnostics

    Get PDF
    We compare herein polar processing diagnostics derived from the four most recent full-input reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex.Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3&thinsp;K at some levels in the SH (1.5&thinsp;K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5&thinsp;% of a hemisphere (0.75&thinsp;% of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1&thinsp;K in both hemispheres, and average APSC differences less than 0.3&thinsp;% of a hemisphere.The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses.We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas.Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.</p

    Connections Between the Stratosphere and Surface Weather Associated with the Stratospheric Sudden Warming in Early 2018

    Get PDF
    A major Stratospheric Sudden Warming (SSW) occurred on 11 February 2018. This was the first major SSW since January 2013 and the first split-vortex SSW since January 2009. We examine the SSW and the tropospheric connections using the NASA MERRA-2 reanalysis (1980-2018) and the NASA GEOS Forward Processing (FP) system. A strong tropospheric wave forcing event in January 2018 displaced the stratospheric vortex off the pole. This displaced vortex persisted until the major SSW vortex split in February. At the time of the major SSW split vortex event the MERRA-2 100 hPa meridional heat flux, a measure of the tropospheric forcing on the stratosphere, attained record high values, associated with a strong tropospheric ridge over the US west coast and wave disturbances over the North Atlantic and Asia. The near-real-time GEOS-FP system forecasted the major SSW event with high skill out to 10 days. The analyses also show that after, the SSW, a steady circulation anomaly persisted over the European sector and the transient weather systems were concentrated over the North American continent, under the stronger of the two split vortices. The propagation of these synoptic-scale vortices around the deep, quasi-stationary vortex that extended from the surface into the stratosphere, is well illustrated in animations of extreme temperature changes near the surface over North America. A quantitative analysis of these synoptic waves and their propagation will examine their signatures in potential vorticity and other fields

    Quantifying Interannual Variability of the UTLS Ozone Using Assimilation of Satellite Data

    Get PDF
    An accurate representation of spatial and temporal variability of the Upper Troposphere Lower Stratosphere (UTLS) ozone is essential for understanding both the tropospheric ozone budget and ozone s contribution to radiative forcing. The complex, dynamically driven structure of trace gas fields in the UTLS presents a challenge to data-based and modelling studies. Small features are not fully resolved in data from limb-sounding instruments such as the Microwave Limb Sounder on EOS-Aura (the EOS-MLS), but are captured in assimilation of those data as vertical structure is added from the assimilated meteorology. This will be demonstrated using a multi-year assimilation of EOS-MLS observations in the Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system. The results demonstrate the realism of the seasonal and year to year variability of laminar structures in the mid-latitudinal ozone field between years 2005-2007, for which independent validation data are available from the HIRDLS instrument. The analysis is done in the context of the underlying large scale dynamics. The lifetimes of most research instruments are too short for them to be used throughout the duration of long-term (at least 3 decades) reanalyses. For example, the EOS-MLS instrument has operated since mid-2004 until present. By contrast, Solar Backscatter Ultra Violet (SBUV) measurements provide continuous data since late 1978, but their vertical resolution is insufficient to represent the profile shape in the UTLS. Assimilation of these SBUV/2 observations in the GEOS-5 data assimilation system has hitherto not captured a realistic ozone structure in the UTLS, even though transport studies using GEOS-5 wind fields do show such structures. We show that careful construction of the background error covariance structure in GEOS-5 can lead to more realistic UTLS ozone fields when assimilating SBUV/2 observations. The reasoning behind this will be discussed, emphasizing the need to retain the sharp gradient of ozone concentrations across the tropopause. We analyze the UTLS ozone distributions in multi-year SBUV/2 assimilation experiments, comparing the results against the independent HIRDLSdataset and, for a longer period, with the MLS assimilation and discuss the consequences for tropospheric ozone and radiative forcing

    Assimilation of the Microwave Limb Sounder Radiances

    Get PDF
    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation

    Optimizing Umkehr Ozone Profile Retrievals

    Get PDF
    NOAA Dobson Umkehr ozone profile records have been collected since the 1970s. Umkehr ozone profiles are used to monitor stratospheric ozone recovery predicted to occur by the 2050s. Current operational Dobson Umkehr profile algorithms produce data that have uncertainty on the order of ~ 5 % in the stratosphere. However, when large volcanic eruptions inject aerosols into the stratosphere, the errors can be as large as 70 %. In order to evaluate Umkehr records for aerosol-related and instrumental artifacts, we compare observations with a Hindcast simulation of the NASA Merra-2 Global Modeling Initiative (GMI) Replay (M2GMI, Orbe et al, 2017; Wargan et al, 2018) and Chemistry Transport Model (GMI CTM, Strahan et al, 2013, Strahan et al, 2016). The biases found between the models and observations are summarized for each Dobson calibration and volcanic eruption period, thus providing a reference tool for homogenization of the Umkehr time series and removal of volcanic aerosol errors

    From LIMS to OMPS-LP: Limb Ozone Observations for Future Reanalyses

    Get PDF
    High vertical resolution and accuracy of ozone data from satellite-borne limb sounders has made them an invaluable tool in scientific studies of the middle and upper atmosphere. However, it was not until recently that these measurements were successfully incorporated in atmospheric reanalyses: of the major multidecadal reanalyses only ECMWF's (European Centre for Medium-Range Weather Forecasts') ERA (ECMWF Re-Analysis)-Interim/ERA5 and NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications-2) use limb ozone data. Validation and comparison studies have demonstrated that the addition of observations from the Microwave Limb Sounder (MLS) on EOS (Earth Observing System) Aura greatly improved the quality of ozone fields in MERRA-2 making these assimilated data sets useful for scientific research. In this presentation, we will show the results of test experiments assimilating retrieved ozone from the Limb Infrared Monitor of the Stratosphere (LIMS, 1978/1979) and Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP, 2012 to present). Our approach builds on the established assimilation methodology used for MLS in MERRA-2 and, in the case of OMPS-LP, extends the excellent record of MLS ozone assimilation into the post-EOS era in Earth observations. We will show case studies, discuss comparisons of the new experiments with MERRA-2, strategies for bias correction and the potential for combined assimilation of multiple limb ozone data types in future reanalyses for studies of multidecadal stratospheric ozone changes including trends

    Impacts of Assimilating MLS Temperature on the Upper Stratosphere in GEOS-5

    Get PDF
    Standard configurations of the GEOS-5 data assimilation system use nadir infrared and microwave sounders that provide deep-layer constraints on the thermal structure in the stratosphere. In the upper stratosphere, this information is currently provided by the Advanced Microwave Sounding Units (AMSU-As) on NOAA s polar-orbiting satellites. The highest peaking AMSU-A channel (14) peaks near 2.5hPa. Evaluation of the upper stratosphere reveals substantial biases in the temperature, cased in part by biases in the underlying GCM, and difficulties in representing the stratopause structure under disturbed conditions. This work demonstrates, unsurprisingly, that the assimilation into GEOS-5 of temperature profiles derived from EOS-Aura MLS leads to a substantially better representation of the stratopause structure from a climatological perspective and for disturbed events. Future plans with GEOS-5 include a reanalysis that includes numerous "research" datasets alongside the operational NOAA datasets that were used in MERRA. As preparation for this reanalysis, the present study examines how assimilating the MLS observations impact the error statistics for the AMSU-A instruments. Discussion will address the issue of bias correction for the AMSU-A Channel 14 radiances, which is presently turned off in GEOS-5 because of the absence of accurate temperature observations that can anchor the GEOS-5 analyses. The issue of what can be done in periods when no limb-sounder data are available will also be addressed

    An Intercomparison of Tropospheric Ozone Retrievals Derived from Two Aura Instruments and Measurements in Western North America in 2006

    Get PDF
    Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectoryenhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream
    corecore