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Abstract17

Stratospheric intrusions have been the interest of decades of research for their ability to18

bring stratospheric ozone (O3) into the troposphere with the potential to enhance sur-19

face O3 concentrations. However, these intrusions have been misrepresented in models20

and reanalyses until recently, as the features of a stratospheric intrusion are best iden-21

tified in horizontal resolutions of 50 km or smaller. NASA’s Modern-Era Retrospective22

Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-23

available high-resolution dataset (∼50 km) with assimilated O3 that characterizes O324

on the same spatiotemporal resolution as the meteorology. We demonstrate the science25

capabilities of the MERRA-2 reanalysis when applied to the evaluation of stratospheric26

intrusions that impact surface air quality. This is demonstrated through a case study27

analysis of stratospheric intrusion-influenced O3 exceedences in spring 2012 in Colorado,28

using a combination of observations, the MERRA-2 reanalysis and the Goddard Earth29

Observing System Model, Version 5 (GEOS-5) simulations.30

1 Introduction31

Surface ozone (O3) is harmful to human health and agriculture [Scherrer et al., 2006;32

Krzyzanowski and Cohen, 2008]. Near the surface, O3 is termed a secondary pollutant33

since it is a product of the photochemical reaction with precursors such as nitrogen ox-34

ides (NOx; NO and NO2), carbon monoxide (CO) and non-methane hydrocarbons which35

have both man-made and natural emission sources in the troposphere. Therefore, in or-36

der to reduce near surface O3 concentrations, communities must reduce anthropogenic37

pollution sources. However, the injection of stratospheric O3 into the troposphere, known38

as a stratospheric intrusion (SI), can also lead to concentrations of ground-level O3 ex-39

ceeding the national ambient air quality standard (NAAQS) set by the Environmental40

Protection Agency (EPA), especially at high elevations [e.g., Langford et al., 2009, 2015;41

Lin et al., 2012, 2014; Yates et al., 2013; Zhang et al., 2014]. In October 2015, the EPA42

revised the US NAAQS for daily maximum 8-hour average (MDA8) O3 from 75 parts43

per billion by volume (ppbv) to 70 ppbv [U.S. Environmental Protection Agency, 2015].44

Therefore, it is crucial that we are able to understand, model, and predict SIs and their45

potential impact on surface O3 concentrations.46

SIs form as a result of the tropopause being drawn down below the jet stream, re-47

ferred to as tropopause folding, often associated with an upper-level trough. SIs are char-48

acterized by O3-rich [e.g., Danielsen, 1968; Shapiro, 1974, 1980; Holton et al., 1995; Brown-49

ing , 1997] and CO-poor [Fischer et al., 2000] air, with relatively high levels of potential50

vorticity (PV) [Holton et al., 1995] and low levels of water vapor often observed in satel-51

lite imagery as a “dry slot” [e.g., Bader et al., 1995; Wimmers et al., 2003]. Therefore,52

tropopause folds can lead to the mixing of stratospheric and tropospheric air with dif-53

ferent chemical and meteorological properties at low altitudes [e.g., Danielsen, 1980; Shapiro,54

1980; Holton et al., 1995], remaining behind a mid-latitude cyclone’s surface cold front55

[Browning , 1997; Bethan et al., 1998; Cooper et al., 2001; Knowland et al., 2015]. The56

west coast of the USA is located at the end of the Pacific Ocean storm track [e.g. Hoskins57

and Hodges, 2002], a region favorable for stratosphere-to-troposphere transport of O358

[James et al., 2003; Sprenger and Wernli , 2003; Stohl et al., 2003; Škerlak et al., 2014].59

On the lee-side of the Rocky Mountains, cyclones form (or redevelop) supported by upper-60

level troughs [McClain, 1960; Carlson, 1991]. However, the descending motion associ-61

ated with the upper-level trough can still be a strong feature in the troposphere over the62

Rocky Mountains, prior to the identification of a surface low pressure system. In the upper-63

level flow, the troughs can form closed lows and even become “cut-off” from the west-64

erly flow [Palmén and Newton, 1969]. This can result in the prolonged influence of the65

tropopause folds on tropospheric O3 concentrations over a region [Lin et al., 2012; Yates66

et al., 2013] until the cut-off low (COL) dissipates or is reabsorbed into the mean flow67

[Nieto et al., 2008]. During the winter and spring, there is a build-up of O3 in the lower68
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stratosphere, and this leads to SIs having the largest influence on surface O3 in the spring69

[Danielsen and Mohnen, 1977; Holton et al., 1995; Monks, 2000].70

For over 40 years, studies have observed the injection of O3-rich air into the tro-71

posphere within tropopause folds over western USA [e.g., Lovill , 1970; Shapiro, 1980;72

Langford et al., 1996, 2009, 2012; Wimmers et al., 2003; Cooper et al., 2004; Lefohn et al.,73

2011] with recent studies focusing on the impact of SIs on O3 air quality exceedences in74

the high elevation communities of the Rocky Mountains [e.g., Langford et al., 2009, 2015;75

Lin et al., 2012, 2014; Yates et al., 2013; Zhang et al., 2014]. Langford et al. [2009] fo-76

cused on the transport of stratospheric O3 in Colorado’s Front Range during the spring77

of 1999 using lidar and surface measurements of O3. They identified high concentrations78

of O3 in the mid-troposphere down to the surface as a result of tropopause folds asso-79

ciated with upper-level troughs in the region. Lin et al. [2012] utilized the abundance80

of vertical observations from ozonesondes and lidar taken during the 2010 NOAA Cal-81

Nex field campaign in California as well as ground-based measurements throughout west-82

ern USA, in conjunction with a model study to quantify the stratospheric fraction of air83

that impacts NAAQS exceedence events. Using the NOAA Geophysical Research Lab-84

oratory (GFDL) Atmosphere Model version 3 (AM3) with fully coupled stratosphere-85

troposphere chemistry at ∼50 km resolution, Lin et al. [2012] attributed 50–60 % of to-86

tal modelled surface O3 in spring 2010 (as much as 20–40 ppbv of additional O3 during87

4 deep intrusions) to stratospheric origins on exceedence days. Using a coarser resolu-88

tion model (∼200 km), Lin et al. [2015] extended the analysis to April and May during89

a 23-year period (1990-2012) and found the average stratospheric O3 contribution is 15–90

25 ppbv of western US surface O3.91

While the impact of SIs on surface O3 in the western US is well documented, sim-92

ulating and predicting such events remains challenging. The resolutions of current global93

meteorological analyses (∼10-50 km) are sufficient for resolving the dynamical evolution94

of SIs, however these models typically contain very limited representations of trace gases95

like O3. Reanalyses have been used in numerous studies to explore the frequency, spa-96

tial variations and structure of SIs [e.g., Stohl and Trickl , 1999; Waugh and Polvani , 2000;97

Sprenger and Wernli , 2003; Lefohn et al., 2011; Reutter et al., 2015; Nath et al., 2016],98

however, there are very few such studies which also use reanalysis O3 [Škerlak et al., 2014;99

Zanis et al., 2014; Knowland et al., 2015, 2017; Ott et al., 2016; Ryoo et al., 2017]. It100

is our objective to investigate whether NASA’s Modern-Era Retrospective Analysis for101

Research and Applications Version-2 (MERRA-2) reanalysis, which is similar to NASA’s102

Global Modeling and Assimilation Office (GMAO) operational forecasting system, is able103

to capture the dynamical features of a SI, in particular the isentropic descent of elevated104

O3 within and below the tropopause fold. Such datasets would support air quality agen-105

cies for more rapid identification of the impact of stratospheric air on ground-level O3106

[Kaldunski et al., 2017] separate from local sources or the long-range transport of O3 [Ryoo107

et al., 2017]. The focus of this study will be on springtime (March - June (MAMJ)) O3108

air quality exceedences in 2012 which were identified by the EPA as having direct con-109

nection with SIs [US EPA AQS database, 2017].110

2 Data111

2.1 Observational datasets112

In the spring of 2012, there were seven days when the MDA8 O3 [EPA AirData,113

2016] at the Rocky Mountain National Park (RMNP) Long’s Peak monitoring station114

(40.27◦N, 105.54◦W, 2742 m, Air Quality System (AQS) Site ID 08-069-0007, located115

∼100 km northwest of Denver) exceeded the NAAQS of 75 ppbv as a result of SIs [US116

EPA AQS database, 2017]: March 26th, April 6th, April 27th, May 26-28th, and June117

14th. Several other suburban and rural monitoring stations in Colorado also reported118

exceedences related to SIs on these and other dates in spring 2012 [US EPA AQS database,119
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2017]. Less than half of the diurnal variation in the hourly MAMJ O3 at RMNP can be120

explained by the 1st (diurnal) harmonic, therefore other drivers in the O3 variability must121

be considered. Deep SIs, those which impact surface O3 concentrations, were anomalously122

frequent in the western USA in the spring of 2012 compared to the 1990–2012 period [Lin123

et al., 2015], and observed MDA8 O3 was also found to have a maximum in the west-124

ern USA that spring for the period 2004–2012 [Baylon et al., 2016]. This study will ex-125

plore the representation of two of the SIs in remote sensing observations and the God-126

dard Earth Observing System Model, Version 5 (GEOS-5) model and assimilation prod-127

ucts. The first case study in early spring (March 26th local time (LT; +07:00 UTC) here-128

after will be referred to as the SI-1 event and the second case study, which occurred in129

late spring (May 26-28th event LT), will be referred to as the SI-2 event.130

Daily total column O3 (TCO) and relative humidity (RH) from the Atmospheric131

Infrared Sounder (AIRS) on NASA’s Aqua satellite are used to identify the presence of132

SIs over RMNP in observational data and to validate MERRA-2 reanalysis TCO since133

the AIRS O3 data were not assimilated in MERRA-2. AIRS is equipped to measure both134

meteorological variables and chemical profiles [Aumann et al., 2003; Susskind et al., 2006;135

Chahine et al., 2006] and observes the surface twice daily (01:30 and 13:30 LT). The re-136

trievals are performed even when clouds are present which makes the dataset ideal when137

analyzing regions near mid-latitude cyclones. The AIRS team produces several datasets138

of different spatiotemporal resolution. We use the level 3 version 6 (L3 V6) at 1◦ hor-139

izontal resolution [AIRS Science Team/Joao Texeira, 2013].140

2.2 Model datasets141

NASA’s MERRA-2 reanalysis is an ideal candidate to explore the vertical struc-142

ture of the SIs over RMNP as it is a publicly-available, high-resolution reanalysis dataset143

(0.5◦ x 0.625◦ latitude-by-longitude grid, nominally ∼50 km in the latitudinal direction,144

72 model layers up to 0.01 hPa [Bosilovich et al., 2016; Gelaro et al., 2017]) which as-145

similates both O3 and meteorological observations [Bosilovich et al., 2015; McCarty et al.,146

2016; Gelaro et al., 2017]. The MERRA-2 reanalysis covers the period from January 1,147

1980 to within a couple weeks of real time and is the product of the GEOS-5 data as-148

similation system (DAS) [Bosilovich et al., 2015; Gelaro et al., 2017]. The GEOS-5 model149

includes monthly-averaged ozone production and loss rates linearly interpolated to daily150

values for both the stratosphere and the troposphere [Bosilovich et al., 2016]. After 2004,151

MERRA-2 assimilates satellite retrievals of TCO from the Ozone Monitoring Instrument152

(OMI; Levelt et al. [2006]) and stratospheric O3 profiles from the Microwave Limb Sounder153

(MLS; Waters et al. [2006]) [Bosilovich et al., 2015; McCarty et al., 2016; Gelaro et al.,154

2017]. MERRA-2 O3 in the lower stratosphere is well-represented and has been shown155

to agree with ozonesondes [Wargan et al., 2015, 2017]; therefore, where there is direct156

influence of stratospheric O3 into the troposphere, such as an SI, we can expect realis-157

tic intrusions although possibly biased since the background ozone in the troposphere158

is simulated by simple chemistry parametrization [Ott et al., 2016].159

The meteorological and chemical variables – winds (u, v), vertical velocity (ω), equiv-160

alent potential temperature (θe; calculated from temperature and specific humidity), Er-161

tel’s PV (EPV), RH and O3 mixing ratios – were extracted on pressure levels up to 150162

hPa [GMAO , 2015a]. In addition, MERRA-2 sea-level pressure (SLP) [GMAO , 2015b]163

and TCO [GMAO , 2015c] are used in the comparison to the AIRS retrievals.164

Two additional model variables are used: GEOS-5 simulated CO using emissions165

described in Ott et al. [2010] and an idealized stratospheric “influence” tracer (STFR)166

from Ott et al. [2016]. The STFR is set to 1 in the stratosphere and to 0 at the surface.167

For the STFR simulation, the tropopause was the higher height of the thermal tropopause168

or the dynamical tropopause. In the GEOS model, the dynamical tropopause is defined169
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as the 3 PVU isosurface, where 1 PV unit (PVU) = 10−6 K m2 kg−1 s−1, which is higher170

than the conventional 2 PVU isosurface [Holton et al., 1995].171

3 Results172

The 8-hour running average O3 and the hourly average O3 observed at RMNP and173

the corresponding 3-hourly surface O3 from MERRA-2 [GMAO , 2015d] are presented174

here for spring of 2012 (Fig. 1b). During the SI-1 event, the observed hourly O3 at RMNP175

≥ 75 ppbv for 7 hours (1 hour March 26th and 6 hours March 27th, based on UTC, Fig. 1a)176

with the maximum observed hourly O3 equal to 87 ppbv observed at March 27, 2012 00UTC177

(Fig. 1b; MERRA-2 O3 = 58 ppbv). The second intrusion event, SI-2, influenced ground-178

level O3 for several days at RMNP; observed hourly O3 ≥ 75 ppbv for 11 hours during179

this 3-day period (Fig. 1a) with maximum observed hourly O3 of 91 ppbv at 09 UTC180

on May 27, 2012 (Fig. 1b; MERRA-2 O3 = 65 ppbv). Considering the new NAAQS value181

for MDA8 O3, RMNP observed hourly O3 ≥ 70 ppbv for 11 hours during the SI-1 event182

and 30 hours for the SI-2 event (Fig. 1a). Figure 1 highlights the doubling of possible183

exceedence days if the new MDA8-O3 NAAQS of ≥ 70 ppbv is applied to 2012. As ex-184

pected, the MERRA-2 surface O3 for the grid box closest to RMNP underestimates the185

O3 variability of a point source measurement (r2 = 0.34, based on 968 3-hourly timesteps;186

Fig. 1b) in part because of the simple O3 chemistry in the GEOS-5 model; however, there187

are spikes in the reanalysis O3 at or near the times of observed O3 exceedences, portray-188

ing the influence of stratospheric O3 on the grid-box.189

At the time of an intrusion, relatively dry air is expected to descend toward the210

surface behind a cold front [e.g., Bethan et al., 1998; Cooper et al., 2001; Knowland et al.,211

2015]. Due to the topography, SLP over the Rocky Mountains can be difficult to inter-212

pret, however both of the SI case studies occurred when there was a low pressure in the213

Northern Plains region (Fig. 2a,c). During the SI-1 event, there were two low pressure214

systems, one in southwest Montana and one in southeast Wyoming (Fig. 2a). The 700 hPa RH215

was low to the west of a surface trough extending from Wyoming approximately due south216

into Mexico. For the late spring SI-2 event, a cyclone tracked northeastward into North217

Dakota with a cold front trailing into western Kansas where it transitions to a station-218

ary front (Fig. 2c). Here, a new low pressure system formed in southeastern Colorado,219

from which a dry line extends southward through Texas. While relatively low RH is ob-220

served by AIRS to the west of the cold front through the Dakotas and Nebraska, there221

is an even stronger gradient in RH across the dry line (Fig. 2c).222

The SI events can be identified by concurrent observations of O3-rich air with the223

low RH. This can be achieved by focusing on regions where the gradients in TCO are224

large [Olsen et al., 2000; Ott et al., 2016]. The spatial distributions in AIRS TCO and225

MERRA-2 TCO at the approximate time of the AIRS observations agree well [Ott et al.,226

2016], although the MERRA-2 TCO is generally biased low compared to observations227

in Fig. 2b,d. This aligns with the findings of Wargan et al. [2017] that MERRA-2 TCO228

in the mid-latitudes was biased low compared to independent TCO measurements from229

the TOMS (Total Ozone Mapping Spectrometer; Herman et al., 1991) instrument. The230

maximum TCO – in both AIRS and MERRA-2 – stretches from the Pacific Northwest231

into the Rocky Mountain states linearly in Fig. 2b and with curvature in Fig. 2d. The232

location of large TCO gradients in Fig. 2b,d correspond to the low RH regions in Fig. 2a,c;233

in particular, large TCO gradients in both AIRS and MERRA-2 and low RH are co-located234

over Colorado (Fig. 2).235

We look for further evidence of the SI-1 and SI-2 tropopause folding events in the236

MERRA-2 reanalysis at the time of maximum O3 at RMNP (Fig. 3). From 300 to 500 hPa237

over the western USA, there are fine-scale filaments of stratospheric air, specifically high238

levels of O3 within the 2 PVU contour, which distinguish the SI events from the back-239

ground (Fig. 3). At the time of maximum hourly O3 observed at RMNP during the SI-1240
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Figure 1. a) Number of hours in an exceedence day (time in UTC) where the RMNP ob-

served hourly average O3 ≥ 75 ppbv (pink circles) and ≥ 70 ppbv (grey circles) b) 8-hourly

running average O3 (solid black line) and hourly average O3 (dash-dot blue line) from the EPA

surface observations at RMNP and the 3-hourly MERRA-2 reanalysis surface O3 at the near-

est grid point to RMNP (40◦N, 105.625◦W; orange line) for 1 March – 30 June 2012 (time in

UTC). The exceedence events where the MDA8 O3 ≥ the EPA standard in 2012 (75 ppbv; dot-

ted horizontal red line) are indicated by the vertical pink shading and the events that would

be considered exceedences under the new EPA standard (70 ppbv; solid horizontal red line) are

indicated by the vertical grey shading. The times of the SI-1 and SI-2 events, corresponding to

Figs. 2-4, are indicated by the black diamonds.
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199

and SI-2 events, the SI-1 is linear – stretching from Vancouver Island, Canada to the Wyoming-241

Colorado border – as opposed to the curved SI-2 from Washington down to Arizona and242

back to Montana (400 hPa, Fig. 3). Both SI events are a result of a cut-off low (COL)243

near the west coast of the USA in the days prior to the O3 exceedences (not shown). Prior244

to the exceedence at RMNP as a result of SI-1, the tropopause fold rotates around the245

COL and at 500 hPa has a hooked shape off the coast of California (not shown) before246

becoming deformed and elongated – impacting RMNP – as the center of vorticity moves247

east and the western portion is being pulled west as a consequence of an Aleutian low248

(Fig. 3a-d). The hook shape of the SI-2 led to the longer period of high O3 (≥ 75 ppbv)249

at RMNP compared to the duration of high O3 observations associated with SI-1; as the250

SI-2 fold continued to rotate over the western USA at the end of May, there was con-251

tinued draw down of stratospheric air toward the surface over the area, unlike the SI-1252

event which was steered to the northeast as it decayed. It is worth noting that the tro-253
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of line (c)), dry line (line with open half circles (c)) – are presented from the 18UTC

surface analysis (close to 13:30 LT pass) on (a) March 26, 2012 and (c) May 27, 2012

(www.wpc.ncep.noass.gov/archives/web pages/sfc/sfc archive maps, Accessed 8 November 2016).

Note, not all fronts from the analysis archives have been depicted. The location of RMNP (pink

open circle) and the Colorado state border (think black line) are emphasized.
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pospheric background levels of MERRA-2 O3 are qualitatively consistent with a seasonal254

increase in photochemical production from March (Fig. 3a-d) to May (Fig. 3e-h).255
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Figure 3. O3 distribution (color; 5 ppbv increments up to 100 ppbv and increment size in-

creases above 100 ppbv), geopotential height (thin black contours; 5 dam intervals) and dy-

namical tropopause (2 PVU isosurface; thick black contour) on 300 (a,e), 400 (b,f), 500 (c,g)

and 700 hPa surfaces (d,h) corresponding to the time of maximum O3 observations at RMNP

during the SI-1 event (March 27, 2012 00UTC; a-d) and the SI-2 event (May 27, 2012 09UTC;

e-h). Light and dark pink color intervals highlight the previous and current EPA O3 standard,

respectively. The white dashed lines correspond to transects in Fig. 4.
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The intrusion of air from the stratosphere into the troposphere is captured in ver-271

tical transects for the SI events in the MERRA-2 reanalysis dataset and supported by272

the additional GEOS-5 CO and a fraction of stratospheric air tracer (STFR) data (Fig. 4).273

In the N-S transect through SI-1, the dynamical tropopause and high O3 (> 85 ppbv,274

Fig. 4ab; > 40% STFR, Fig. 4c) reached altitudes as low as ∼600 hPa, and elevated O3275

(> 55 ppbv) reached the surface. Relatively dry air is found within the tropopause fold276

and in the troposphere to the south of the fold (RH < 30 %, Fig. 4b). The low CO (< 110 ppbv,277

Fig. 4d) reached 500 hPa within the tropopause fold; however, since the gradient in CO278

at the base of the fold is less than the gradient of O3, the influence of stratospheric CO279

was lost due to mixing with tropospheric air characterized by higher CO mixing ratios.280

A strong jet at 350 hPa (u > 50 m s−1, Fig. 4e) connects down to the surface. There281

is also a clear frontal boundary on the north-side of the fold extending from an upper-282

level front (indicated by tight isotherms, Fig. 4a-e) down to the surface with strong de-283

scent (ω > 80 hPa h−1, white contours, Fig. 4a) and strong ascent (ω < -80 hPa h−1,284

black contours, Fig. 4a).285
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Figure 4. Vertical transects of (a-e) the SI-1 event and (f-o) the SI-2 event taken at

the times of maximum O3 observation at (a-j) 105.625◦W from 20◦-55◦N over RMNP

(black dot, 40◦N) and (k-o) 40◦N from 130◦-90◦W over RMNP (black dot, 105.625◦W). O3

(a,b,f,g,k,l; ppbv), Stratospheric fraction (c,h,m; %), CO (d,i,n; ppbv), Zonal winds (e,j;

m s−1) and Meridional winds (o; m s−1) are all shown in color with θe (dashed contour lines, 5 K

intervals) and the isosurface of 2 PVU (thick black contour). In addition, ω (a,f,k; solid contour

lines, 10 hPa h−1 intervals, with white contours for descent and black contours for ascent) and

RH (b,g,l; hatching < 30%) are drawn. Orography indicated by grey region.

263

264

265

266

267

268

269

270

Both N-S and West-East (W-E) transects are shown for the SI-2 case study (Fig. 4f-286

o). Although the N-S transect is shown to be just on the eastern edge of the tropopause287

fold (Fig. 3e-h) and the tropopause does not appear to be depressed below 350 hPa over288

RMNP (Fig. 4f-j), there are still strong indicators of a fold in the region. Specifically,289

between 35◦ to 45◦N, there are increased levels of O3 reaching the surface (> 65 ppbv,290

Fig. 4f,g) within an area marked by strong descent (ω > 60 hPa h−1, Fig. 4f), low hu-291

midity (RH < 30 % south of 45◦N, Fig. 4g), large STFR (> 60 % at 600 hPa, Fig. 4h),292

and low CO (< 110 ppbv, Fig. 4i). The frontal boundary can be identified by the large293

gradients of ω and θe to the north of RMNP. This transect highlights the ascent ahead294
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of the front (reaching up to ∼200 hPa at 50◦N, maximum ω < -120 hPa h−1 at 400 hPa)295

and to a lesser extent the descent behind the front (Fig. 4f).296

Due to the curvature of the SI-2 fold, the W-E transect intersects both sides of the297

hook as seen at 400 hPa in Fig. 3f. The W-E transect captures the tropopause fold at298

105◦W over RMNP reaching 550 hPa as well as the western portion of the fold reach-299

ing below 400 hPa at 120◦W (Fig. 4k-o). Figure 4o shows the strong jet on both sides300

of the curved tropopause fold (v > 40 m s−1 at 105◦W and v < -30 m s−1 at 120◦W).301

The front above RMNP is also seen in this transect by the large gradients in both ω (Fig. 4k)302

and θe (Fig. 4k-o). Specifically, isentropic descent above RMNP brings dry, O3-rich air303

from the stratosphere towards the surface (O3 > 80 ppbv and STFR > 70 % at 600 hPa,304

O3 > 65 ppbv at surface, Fig. 4k-m). It is interesting to note that low CO (< 110 ppbv,305

Fig. 4n) is simulated to reach the surface at RMNP, despite the large CO values to the306

east emitted by a nearby fire. Biomass burning emissions used in the GEOS-5 simula-307

tion of CO follow the Quick Fire Emission Dataset (QFED) version 2.4r6 which is based308

on MODIS satellite fire radiative power (FRP) [Darmenov and da Silva, 2015].309

4 Conclusions310

Stratospheric intrusions have been the interest of decades of research, especially311

for the potential influence on ground-level O3 concentrations. However, until recently,312

the fine-scale nature of the O3 filaments have been misrepresented in models and reanal-313

yses, as the features of an SI are best identified in horizontal resolutions of 50 km or smaller314

[Büker et al., 2005; Lin et al., 2012; Ott et al., 2016]. For this reason, and likely because315

reanalysis O3 corresponds better with independent observations in the stratosphere than316

in the troposphere [Dragani , 2011; Wargan et al., 2015, 2017], there are very few stud-317

ies of stratosphere-to-troposphere transport which use reanalysis O3 [Škerlak et al., 2014;318

Zanis et al., 2014; Knowland et al., 2015, 2017; Ott et al., 2016; Ryoo et al., 2017]. NASA’s319

MERRA-2 reanalysis is such a high-resolution dataset, which benefits from assimilated320

O3 to present O3 on the same spatiotemporal resolution as the meteorology. Here, two321

case study examples of SI events which were known to impact surface O3 air quality are322

examined. The SI events are diagnosed by the folding of the tropopause under the jet323

stream and subsequent isentropic descent of dry, O3-rich/CO-poor stratospheric air to-324

wards the surface using the MERRA-2 reanalysis in combination with surface O3 and325

satellite observations and GEOS-5 simulated CO and a stratospheric tracer. We show326

that MERRA-2, a publicly-available dataset, can be used in scientific studies to iden-327

tify SIs by both atmospheric dynamics and composition. This is a proof of concept study328

opening the door to detailed multi-year analyses of stratospheric intrusions over the USA329

and worldwide. Though the MERRA-2 reanalysis tends to underestimate the magnitude330

of surface O3 during the SIs [see also Ott et al., 2016], the combination of meteorolog-331

ical variables and O3 for a relatively long period of time to within a few weeks of present332

time may provide a valuable and unique tool for air quality managers [Kaldunski et al.,333

2017] and scientific studies of stratospheric intrusions.334

It is important to be able to identify the differences in anthropogenic and natural335

sources of O3, especially on exceedence days. Since the GEOS-5 model used to produce336

MERRA-2 does not simulate full O3 chemistry in the troposphere, we are unable to de-337

termine the influence of stratospheric O3 on surface concentrations separate from photochemically-338

produced O3, especially in late spring/early summer. The impact of photochemically-339

produced O3 on total O3 later in the spring will be explored in more detail using the GEOS-5340

chemistry climate model in a future publication. Yet this study presents strong evidence341

that the MERRA-2 reanalysis can be used in the identification of SIs.342
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