# From LIMS to OMPS-LP: limb ozone observations for future reanalyses K. Wargan<sup>1,2</sup> N. Kramarova<sup>3</sup>, E. Remsberg<sup>4</sup>, L. Coy<sup>1,2</sup>, L. Harvey<sup>5</sup>, N. Livesey<sup>6</sup> and S. Pawson<sup>2</sup> <sup>1)</sup> SSAI, Lanham, MD, USA, <sup>2)</sup> NASA GSFC, Code 610.1, Greenbelt, MD, USA, <sup>3)</sup> NASA/GSFC, Code 614, Greenbelt, MD, USA, <sup>3)</sup> NASA/GSFC, Code 614, Greenbelt, MD, USA, <sup>3)</sup> NASA/GSFC, Code 614, Greenbelt, MD, USA, <sup>4)</sup> NASA Langley Research Center, Hampton, VA, USA, <sup>5)</sup> LASP, Boulder, CO, USA, <sup>6)</sup> JPL, Caltech Pasadena, CA, USA

**Ozone poses a unique set of challenges for atmospheric reanalyses.** Chemically: the distribution is controlled by sunlight, stratospheric transport and chemistry including anthropogenic pollutants that rise between 1960 and 1997, then decline after the Montreal Protocol becomes effective. Radiatively: ozone in the upper troposphere and lower stratosphere is a climate gas; it also impacts the use of infrared radiances to constrain the 3D thermal field. Observationally: It is the most widely observed trace gas, yet the observations are inhomogeneous in space and time, especially when information about vertical profiles is needed.

### Characterizing the Observations in Periods of Ozone Decline and **Expected Recovery**

WMO-UNEP documents the global ozone decline between about 1980 and 1997; this captured in chemistry-climate also IS models. Early signs of the projected 21<sup>st</sup> century ozone recovery, as CFCs decline and the stratosphere cools, are evident in satellite observations.

There is a well-documented series of total and partial column ozone data (SBUV, TOMS) for this period of ozone decline. NASA's research observations provide only "snapshots" of the ozone profiles, in 1978-1979 with LIMS and the 1990s with Aura-MLS. Many non-NASA satellite data are also available.

Challenge is to integrate the model, with chemistry, to the observations and to use the assimilation to produce a steady longterm ozone record.

NASA's EOS-Aura MLS so far spans the period 2004-2017. The OMPS-LP (Limb Profiler) observations will continue that record into the late 2020s and beyond.

A juxtaposition of past and future ozone change from the WMO-UNEP (2014) assessment and near-global satellite observations of total-column, partial-column, and profile ozone that can be used in reanalyses.

Here we show two examples of initial integration of LIMS (historical) and OMPS-LP (going forward) ozone observations into the GEOS Data Assimilation System, building on the setup used to produce the MERRA-2 reanalysis, which uses SBUV, OMI and MLS ozone data.



## **Summary of Issues**



Challenge is to correct inter-instrument biases to produce a continuous multidecadal ozone record useful for trend analyses.

### Example 2: Assimilating LIMS ozone (1978-1979 NH winter) 1 Dec 1 Jan full stratospheric Evolution of the 1000-K ozone field and the polar vortex chemistry model. edge as a function of equivalent latitude: evidence of Evolution of the 1000-K vigorous wave-driven mixing from January onward. ozone shows a series of vortex disturbances and 960 a major stratospheric 880 800 720 640 $\Sigma$ Feb 21 60.00 Gas-phase NO warming in the second -60.00 chemistry A hint of heterogeneous -180.00





Assimilated lower stratospheric ozone over Antarctica exhibits a realistic distribution but OMPS-LP values are higher inside and lower outside the vortex.

Vortex-averaged ozone change due to chemistry was dominated by NO<sub>x</sub> induced loss.

1 Apr



-300.00