27,328 research outputs found

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt →\rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Calculation of air supply rates and concentrations of airborne contamination in non-UDAF cleanrooms

    Get PDF
    This article reviews a series of scientific articles written by the authors, where the following topics were investigated in relation to non-unidirectional airflow cleanrooms. (1) The air supply rate required to obtain a specified concentration of airborne contamination. (2) The calculation of concentrations of airborne contaminants in different ventilation and dispersion of contamination situations. (3) The decay of airborne contamination (a) during the ‘clean up’ test described in Annex 1 of the EU Guidelines to Good Manufacturing Practice (2008); (b) during the recovery rate test described in Annex B12 of ISO 14644-3 (2005); (c) associated with clean areas, such as airlocks, to reduce airborne contamination before a door into a cleanroom is opened. Worked examples are provided to demonstrate the calculation methods to provide solutions to the above topics

    G-133: A soft x ray solar telescope

    Get PDF
    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money

    High-efficiency heteroepitaxial InP solar cells

    Get PDF
    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet reported for InP heteroepitaxial cells. Approaches for further improving the cell performance are discussed

    InP concentrator solar cells for space applications

    Get PDF
    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined

    Stringy Black Holes and the Geometry of Entanglement

    Full text link
    Recently striking multiple relations have been found between pure state 2 and 3-qubit entanglement and extremal black holes in string theory. Here we add further mathematical similarities which can be both useful in string and quantum information theory. In particular we show that finding the frozen values of the moduli in the calculation of the macroscopic entropy in the STU model, is related to finding the canonical form for a pure three-qubit entangled state defined by the dyonic charges. In this picture the extremization of the BPS mass with respect to moduli is connected to the problem of finding the optimal local distillation protocol of a GHZ state from an arbitrary pure three-qubit state. These results and a geometric classification of STU black holes BPS and non-BPS can be described in the elegant language of twistors. Finally an interesting connection between the black hole entropy and the average real entanglement of formation is established.Comment: 34 pages, 6 figure

    Levels of genetic polymorphism: marker loci versus quantitative traits

    Get PDF
    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species

    How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets: Pericenter Glow and its Application to the HR 4796 Disk

    Get PDF
    Recent images of the disks of dust around the young stars HR 4796A and Fomalhaut show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a forced eccentricity of 0.01 or higher would be imposed on a disk in a system in which there are planets, but no binary companion, the corresponding asymmetry in the disk's structure could serve as a sensitive indicator of these planets that might otherwise remain undetected.Comment: 61 pages, 10 figures, accepted for publication in the Astrophysical Journal (scheduled for January 10, 2000

    Einstein--Maxwell--Dilaton metrics from three--dimensional Einstein--Weyl structures

    Full text link
    A class of time dependent solutions to (3+1)(3+1) Einstein--Maxwell-dilaton theory with attractive electric force is found from Einstein--Weyl structures in (2+1) dimensions corresponding to dispersionless Kadomtsev--Petviashvili and SU(∞)SU(\infty) Toda equations. These solutions are obtained from time--like Kaluza--Klein reductions of (3+2)(3+2) solitons.Comment: 12 pages, to be published in Class.Quantum Gra

    A pharmacokinetic model of inhaled methanol in humans and comparison to methanol disposition in mice and rats.

    Get PDF
    We estimated kinetic parameters associated with methanol disposition in humans from data reported in the literature. Michaelis-Menten elimination parameters (Vmax = 115 mg/L/hr; Km = 460 mg/L) were selected for input into a semi-physiologic pharmacokinetic model. We used reported literature values for blood or urine methanol concentrations in humans and nonhuman primates after methanol inhalation as input to an inhalation disposition model that evaluated the absorption of methanol, expressed as the fraction of inhaled methanol concentration that was absorbed (phi). Values of phi for nonexercising subjects typically varied between 0.64 and 0.75; 0.80 was observed to be a reasonable upper boundary for fractional absorption. Absorption efficiency in exercising subjects was lower than that in resting individuals. Incorporation of the kinetic parameters and phi into a pharmacokinetic model of human exposure to methanol, compared to a similar analysis in rodents, indicated that following an 8-hr exposure to 5000 ppm of methanol vapor, blood methanol concentrations in the mouse would be 13- to 18-fold higher than in humans exposed to the same methanol vapor concentration; blood methanol concentrations in the rat under similar conditions would be 5-fold higher than in humans. These results demonstrate the importance in the risk assessment for methanol of basing extrapolations from rodents to humans on actual blood concentrations rather than on methanol vapor exposure concentrations
    • …
    corecore