40,525 research outputs found

    Arecibo Observatory support of the US international cometary Explorer mission encounter at comet Giacobini-Zinner

    Get PDF
    The Arecibo Observatory in Puerto Rico participated in the support of the U.S. International Cometary Explorer (ICE) mission when the ICE spacecraft passed through the tail of comet Giacobini-Zinner on September 11, 1985. The Arecibo Observatory is a research facility of the National Astronomy and Ionosphere Center (NAIC) operated by Cornell University under contract to the National Science Foundation (NSF). Coverage of the encounter involved the use of the observatory's 305-m (1000-ft) radio reflector antenna and RF and data system equipment fabricated or modified specifically for support of the ICE mission. The successful implementation, testing, and operation of this temporary receive, record, and data relay capability resulted from a cooperative effort by personnel at the Arecibo Observatory, the Goddard Space Flight Center, and the Jet Propulsion Laboratory

    Crew training program for LTA-8 thermal vacuum test

    Get PDF
    Crew training program for lunar module thermal vacuum testin

    Torsion pendulum measurements on viscoelastic materials during vacuum exposure

    Get PDF
    A torsional pendulum apparatus designed for testing in situ in vacuum, the dynamic mechanical properties of materials is described. The application of this apparatus to an experimental program to measure the effects of vacuum on the mechanical properties of two ablator materials (a foamed material and a filled elastomer) and a solid rocket propellant (a filled elastomer) is presented. Results from the program are discussed as to the effects of vacuum on the mechanical properties of these three materials. In addition, time-temperature-superposition, as a technique for accelerating vacuum induced changes in mechanical properties, is discussed with reference to the three materials tested in the subject program

    A comparison of operationally determined atmospheric densities from satellite orbit solutions and the exospheric temperature from the Jacchia-Roberts model

    Get PDF
    Operational orbit determination by the Flight Dynamics Division at the Goddard Space Flight Center has yielded a data base of orbit solutions covering the onset of solar cycle 22. Solutions for nine satellites include an estimated drag adjustment parameter (rho sub 1) determined by the Goddard Trajectory Determination System (GTDS). The rho sub 1 is used to evaluate correlations between density variations and changes in the following: 10.7-centimeter wavelength solar flux (F sub 10.7), the geomagnetic index A sub p, and two exospheric temperatures (T sub c and T sub infinity) adapted from the Jacchia-Roberts atmospheric density model in GTDS. T sub c depends on the daily and 81-day centered mean F sub 10.7; T sub infinity depends on T sub c and the geomagnetic index K sub p values. The highest correlations are between density and T sub infinity. Correlations with T sub c and F sub 10.7 are lower by 9 and 10 percent, respectively. For most cases, correlations with A sub p are considerably lower; however, significant correlations with A sub p were found for some high-inclination, moderate-altitude orbits. Results from this analysis enhance the understanding of the drag model and the accommodation of atmospheric density variations in the operational orbit determination support. The degree of correlation demonstrates the sensitivity of the orbit determination process to drag variations and to the input parameters that characterize aspects of the atmospheric density model. To this extent, the degree of correlation provides a measure of performance for methods of selecting or modeling the thermospheric densities using the solar F sub 10.7 and geomagnetic data as input to the process

    Global and regional importance of the direct dust-climate feedback.

    Get PDF
    Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia

    High-efficiency heteroepitaxial InP solar cells

    Get PDF
    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet reported for InP heteroepitaxial cells. Approaches for further improving the cell performance are discussed

    InP concentrator solar cells for space applications

    Get PDF
    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined

    Type I singularities and the Phantom Menace

    Full text link
    We consider the future dynamics of a transient phantom dominated phase of the universe in LQC and in the RS braneworld, which both have a non-standard Friedmann equation. We find that for a certain class of potentials, the Hubble parameter oscillates with simple harmonic motion in the LQC case and therefore avoids any future singularity. For more general potentials we find that damping effects eventually lead to the Hubble parameter becoming constant. On the other hand in the braneworld case we find that although the type I singularity can be avoided, the scale factor still diverges at late times.Comment: More references added. Final PRD versio

    Origin and roles of a strong electron-phonon interaction in cuprate oxide superconductors

    Get PDF
    A strong electron-phonon interaction arises from the modulation of the superexchange interaction by phonons. As is studied in Phys. Rev. B 70, 184514 (2004), Cu-O bond stretching modes can be soft around (pm pi/a, 0) and (0, pm pi/a), with a the lattice constant of CuO_2 planes. In the critical region of SDW, where antiferromagnetic spin fluctuations are developed around nesting wave numbers Q of the Fermi surface, the stretching modes can also be soft around 2Q. Almost symmetric energy dependences of the 2Q component of the density of states, which are observed in the so called stripe and checker-board states, cannot be explained by CDW with 2Q following the complete softening of the 2Q modes, but they can be explained by a second-harmonic effect of SDW with Q. The strong electron-phonon interaction can play no or only a minor role in the occurrence of superconductivity.Comment: 5 pages, 1 fugur
    corecore