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A strong electron-phonon interaction arises from the modulation of the superexchange interaction by lattice
vibrations. It is responsible for the softening of the half-breathing modes around �±� /a ,0� and �0, ±� /a� in
the two-dimensional Brillouin zone, with a being the lattice constant of CuO2 planes, as is studied in Phys.
Rev. B 70, 184514 �2004�. Provided that antiferromagnetic spin fluctuations are developed around
Q= �±3� /4a , ±� /a� and �±� /a , ±3� /4a�, the electron-phonon interaction can also cause the softening of
Cu-O bond-stretching modes around 2Q, or around �±� /2a ,0� and �0, ±� /2a�. The softening around 2Q is
accompanied by the development of charge fluctuations corresponding to the so called 4a-period stripe or
�4a�4a�-period checkerboard state. However, an observation that the 4a-period modulating part or the 2Q
part of the density of states is almost symmetric with respect to the chemical potential contradicts a scenario in
which the stabilization of a single-2Q or double-2Q charge-density wave following the complete softening of
the 2Q bond stretching modes is responsible for the ordered stripe or checkerboard state. It is proposed that the
stripe or checkerboard state is simply a single-Q or double-Q spin-density wave, whose second-harmonic
effects can explain the observed almost symmetric 2Q part of the density of states. The strong electron-phonon
interaction can play no or only a minor role in the occurrence of d�-wave superconductivity in cuprate oxides.

DOI: 10.1103/PhysRevB.75.064503 PACS number�s�: 74.20.�z, 71.38.�k, 75.30.Et

I. INTRODUCTION

It is one of the most interesting and important issues in
condensed-matter physics to elucidate the mechanism of
high critical temperature �high-Tc� superconductivity occur-
ring in cuprate oxides.1 The oxides are highly anisotropic
quasi-two-dimensional oxides, whose main compositions are
CuO2 planes. High-Tc superconductivity occurs on the CuO2
planes. There are pieces of evidence that the electron-phonon
interaction is strong on the CuO2 planes: the softening of the
half-breathing modes around �±� /a ,0� and �0, ±� /a� in the
two-dimensional Brillouin zone �2DBZ�,2–6 with a being the
lattice constant of the CuO2 planes, the softening of Cu-O
bond stretching modes around �±� /2a ,0� and �0, ±� /2a� in
2DBZ,7,8 kinks in the dispersion relation of quasiparticles,9,10

and so on. It may be argued, therefore, that the electron-
phonon interaction must play a major role in the occurrence
of high-Tc superconductivity. On the other hand, observed
isotope shifts of Tc are small,11 which implies that the strong
electron-phonon interaction can play only a minor role in
high-Tc superconductivity itself. The origin and roles of the
strong electron-phonon interaction should be clarified in or-
der that the issue of high-Tc superconductivity might be
solved.

Parent cuprate oxides with no doping are Mott insulators.
When holes or electrons are doped into the Mott insulators,
high-Tc superconductivity appears. Cuprate oxide supercon-
ductors lie in the vicinity of the Mott metal-insulator transi-
tion or crossover. It may be argued, therefore, that strong
electron correlations must play a crucial role not only in the
occurrence of high-Tc superconductivity, but also in the
origin and roles of the strong electron-phonon interaction.

The Hubbard model is one of the simplest effective
Hamiltonians for strongly correlated electron liquids. In
Hubbard’s approximation,12,13 a band splits into two sub-
bands when the on-site repulsion U is so large that U�W,

with W being the bandwidth of unrenormalized electrons.
The subbands are called the upper Hubbard band �UHB� and
the lower Hubbard band �LHB�, and a gap between UHB and
LHB is called the Hubbard gap. In Gutzwiller’s
approximation,14–16 a narrow quasiparticle band appears
around the chemical potential. The band and quasiparticles
are called the Gutzwiller band and quasiparticles, respec-
tively. It is plausible to speculate that the density of states has
in fact a three-peak structure, with the Gutzwiller band be-
tween UHB and LHB. Both of the approximations are
single-site approximations �SSA�. Another SSA theory con-
firms the speculation,17 showing that the Gutzwiller band
appears at the top of LHB when the electron density per unit
cell is less than 1. The nature of the ground state of the
Hubbard model depends on the nature of the Gutzwiller
quasiparticles.

The SSA that considers all the single-site terms is reduced
to determining and solving self-consistently the Anderson
model,18–20 which is one of the simplest effective Hamilto-
nians for the Kondo problem. Hence, the three-peak structure
corresponds to the Kondo peak between two subpeaks in the
Anderson model, or in the Kondo problem. The s-d model is
also one of the simplest effective Hamiltonians for the
Kondo problem. According to Yosida’s perturbation theory21

and Wilson’s renormalization-group theory,22 the ground
state of the s-d model is a singlet or a normal Fermi liquid
provided that the Fermi surface of conduction electrons is
present. Since the s-d model is derived from the Anderson
model, the ground state of the Anderson model is also a
normal Fermi liquid. It is certain, therefore, that under the
SSA the ground state of the Hubbard model is a normal
Fermi liquid or a metal.23 Even if the Hubbard gap opens, the
Fermi surface of the Gutzwiller quasiparticles is present.

The SSA can also be formulated as the dynamical
mean-field theory24 and the dynamical coherent potential
approximation.25 In the SSA, local fluctuations are
rigorously considered, but Weiss mean fields, which are
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responsible for the appearance of the corresponding order
parameter, are ignored. Hence, the SSA is rigorous for infi-
nite dimensions within the Hilbert subspace with no order
parameter.26 In Kondo-lattice theory,18–20 an unperturbed
state is the normal Fermi liquid, which is constructed in the
nonperturbative SSA theory, and not only effects of intersite
fluctuations but also ordering due to Weiss mean fields such
as magnetism, superconductivity, and so on are perturba-
tively considered. Kondo-lattice theory can also be formu-
lated as 1/d expansion theory, with d being the spatial
dimensionality.

The d-p model, where Cu 3d and O 2p orbits are explic-
itly considered, is one of the simplest effective Hamiltonians
for cuprate oxide superconductors. Since the on-site repul-
sion U plays a crucial role in the d-p model as it does in the
Hubbard model, it is straightforward to extend the analysis
for the Hubbard model to the d-p model. Observed quasipar-
ticle states, which are often called midgap states, are simply
the Gutzwiller quasiparticle states, which can also be renor-
malized by intersite fluctuations. When observed specific-
heat coefficients as large as ��14 mJ/K2 mol are used,27,28

the Fermi-liquid relation gives29,30

W* = 0.3–0.4 eV, �1.1�

for the effective bandwidth of the Gutzwiller quasiparticles
in optimal-doped cuprate oxide superconductors, where Tc is
the highest as a function of doping concentrations. According
to field theory, the superexchange interaction arises from the
virtual exchange of a pair excitation of electrons across the
Hubbard gap.31 Since the Gutzwiller quasiparticles, which
are responsible for metallic properties, play no significant
role in the virtual exchange process, the superexchange in-
teraction is relevant even in a metallic phase, provided that
the Hubbard gap opens. Cooper pairs can also be bound by a
magnetic exchange interaction.32 Since the superexchange
interaction constant is as strong as33 J=−�0.10–0.15� eV be-
tween nearest-neighbor Cu ions on a CuO2 plane, observed
high Tc can be easily reproduced. In actual, it has already
been proposed that the condensation of d�-wave Cooper
pairs between the Gutzwiller quasiparticles due to the super-
exchange interaction is responsible for high-Tc
superconductivity.34,35 Since the superexchange interaction is
strong only between nearest-neighbor Cu ions, it is definite
that theoretical Tc of the d� wave is much higher than those
of other waves. In fact, high-Tc superconductivity occurs in
an intermediate-coupling regime �J � /W*=0.3–0.5 for super-
conductivity, which is realized in the strong-coupling regime
for electron correlations defined by U /W�1.

Since charge fluctuations are suppressed by strong elec-
tron correlations, the conventional electron-phonon interac-
tion arising from charge-channel interactions must be weak
in cuprate oxide superconductors. On the other hand, an
electron-phonon interaction arising from spin-channel inter-
actions can be strong. For example, an electron-phonon in-
teraction arising from the modulation of a magnetic ex-
change interaction by phonons plays a significant role in the
spin-Peierls effect. It has been shown in a previous paper36

that an electron-phonon interaction arising from the modula-
tion of the superexchange interaction by phonons is strong in

cuprate oxide superconductors. The electron-phonon interac-
tion can explain the softening of the half-breathing modes
around �±� /a ,0� and �0, ±� /a� in 2DBZ. It has been pre-
dicted that the softening must be small around �±� /a , ±� /a�
in 2DBZ. An attractive mutual interaction due to such an
electron-phonon interaction is strong between quasiparticles
on next-nearest-neighbor Cu ions, but is very weak between
those on nearest-neighbor Cu ions. Therefore, the mutual in-
teraction can play no significant role in the binding of
d�-wave Cooper pairs. Observed small isotope shifts of Tc
can never contradict the presence of the strong electron-
phonon interaction.

The so called 4a-period stripes and �4a�4a�-period
checkerboards are observed in under-doped cuprate oxide
superconductors,37–42 whose doping concentrations are
smaller than those of optimal-doped ones. The wave num-
bers of Cu-O bond stretching modes, �±� /2a ,0� and
�0, ±� /2a� in 2DBZ, correspond to the period 4a of stripes
and checkerboards. The softening of the stretching modes is
accompanied by the development of 4a-period or
�4a�4a�-period fluctuations in charge channels, which
are simply stripe or checkerboard fluctuations. It may be ar-
gued, therefore, that a charge-density wave �CDW� follow-
ing the complete softening of the bond-stretching modes is
responsible for ordered stripes and checkerboards.

One of the purposes of this paper is to show that the
strong electron-phonon interaction can also explain the soft-
ening of Cu-O bond-stretching modes in cuprate oxide su-
perconductors. The other purpose is to examine critically the
relevance of the CDW scenario, whether or not the CDW is
actually responsible for ordered stripes and checkerboards.
This paper is organized as follows. Preliminary discussions
are presented in Sec. II; the derivation of the electron-
phonon interaction is reviewed in Sec. II A and Kondo-
lattice theory is reviewed in Sec. II B. The softening of the
bond-stretching modes around �±� /2a ,0� and �0, ±� /2a� in
2DBZ is studied in Sec. III. The relevance of the CDW sce-
nario for stripes and checkerboards is critically examined in
Sec. IV. An argument on the mechanism of high-Tc super-
conductivity is given in Sec. V. Conclusions are presented in
Sec. VI.

II. PRELIMINARIES

A. Electron-phonon interaction

In cuprate oxide superconductors, the superexchange in-
teraction arises from the virtual exchange of a pair excitation
of 3d electrons between UHB and LHB that are strongly
hybridized subbands between Cu 3d and O 2p orbits.31

When the broadening or finite bandwidths of UHB and LHB
are ignored, the exchange interaction constant between
nearest-neighbor Cu ions on a CuO2 plane is given by

J = −
4V 4

��d − �p + U�2� 1

�d − �p + U
+

1

U
� , �2.1�

with V being the hybridization matrix between nearest-
neighbor O 2p and Cu 3d orbits, �d and �p the depths of
Cu 3d and O 2p levels, and U the on-site repulsion between
Cu 3d electrons.
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Doped holes reside mainly at O ions. The preferential
doping suggests that O 2p levels are shallower than Cu 3d
levels or that parent cuprate oxides with no hole doping must
be charge-transfer insulators rather than Mott insulators;
charge-transfer insulators and Mott insulators are character-
ized by �p��d and �p��d, respectively. Since the hybridiza-
tion between Cu 3d and O 2p orbits must be strong, it may
also be argued that Cu 3d levels are much deeper than O 2p
levels, that is, �p��d rather than �p��d, to explain the ob-
served preferential doping. However, the suggested level
scheme of �p��d or �p��d disagrees with the prediction of
Mott insulators, �d−�p�1 eV, by band calculations.43–45 The
preferential doping does not necessarily mean that the parent
cuprate oxides are charge-transfer insulators, but it simply
means that the local charge susceptibility of 3d electrons is
much smaller than that of 2p electrons, which implies that
the effective on-site repulsion U between 3d electrons is very
strong. It is assumed in this paper that V�1.6 eV and
�d−�p�1 eV, as is predicted by band calculations.43–45

Since the on-site U should be so large that the Hubbard gap
might open, it is assumed that U�5 eV. Then, Eq. �2.1�
gives J�−0.27 eV. This is about twice as large as the ex-
perimental J=−�0.10–0.15� eV.33 This discrepancy is re-
solved when nonzero bandwidths of UHB and LHB are
considered.31

Displacements of the ith Cu ion and the �ij�th O ion,
which lies between the nearest-neighbor ith and jth Cu ions,
are given by

ui = 	
	q


vd,	q


2NMd�	q

eiq·Ri�	q�b	−q
† + b	q� �2.2�

and

u�ij� = 	
	q


vp,	q


2NMp�	q

eiq·R�ij��	q�b	−q
† + b	q� , �2.3�

with Ri and R�ij�= �Ri+R j� /2 being positions of the ith Cu
and �ij�th O ions, Md and Mp masses of Cu and O ions, b	q

†

and b	q creation and annihilation operators of a phonon with
a polarization 	 and a wave vector q, �	q a phonon energy,
�	q= ��	q,x ,�	q,y ,�	q,z� a polarization vector, and N the num-
ber of unit cells. Here, only longitudinal phonons are consid-
ered so that it is assumed that �	q= �qx ,qy ,qz� / �q� for q
within the first Brillouin zone.The q dependence of vd,	q and
vp,	q is crucial. For example, vd,	q=0 and vp,	q=O�1� for
modes that bring no change in adjacent Cu-Cu distances.

Two types of electron-phonon interactions arise from the
modulations of the superexchange interaction J by the vibra-
tions of O and Cu ions. When they are considered, it is
convenient to define a dual-spin operator. First, a single-spin
operator is defined by

S�q� =
1


N
	
k�

1

2
��d�k+�1/2�q��

† d�k−�1/2�q�, �2.4�

with �= ��x ,�y ,�z� being the Pauli matrixes and dk�
† and dk�

being creation and annihilation operators, respectively, of 3d
electrons with wave number k. Then, the dual-spin operator
is defined by

P��q� =
1

2	
q�

���q���S�q� +
1

2
q� · S�− q� +

1

2
q�� ,

�2.5�

with

�s�q� = cos�qxa� + cos�qya� �2.6�

and

�d�q� = cos�qxa� − cos�qya� . �2.7�

It is assumed in this paper that the x and y axes are within
CuO2 planes and the z axis is perpendicular to CuO2 planes.
The electron-phonon interactions are simply given by

Hp = iCp	
q


vp,	q


2NMp�	q

�b	−q
† + b	q�

� �̄s�q� 	
�=s,d

���1

2
q�P��q� �2.8�

and

Hd = iCd	
q


vd,	q


2NMd�	q

�b	−q
† + b	q� 	

�=s,d
�̄��q�P��q� ,

�2.9�

with Cp and Cd being real constants, which are given in the
previous paper,36 and

�̄s�q� = 2�e	xsin�qxa

2
� + e	ysin�qya

2
�� �2.10�

and

�̄d�q� = 2�e	xsin�qxa

2
� − e	ysin�qya

2
�� . �2.11�

B. Kondo-lattice theory

One of the simplest effective Hamiltonians for the elec-
tron part of cuprate oxide superconductors is the d-p model
on a square lattice. Since the anisotropy is large, it is conve-
nient to consider phenomenologically quasi-two-dimensional
features. The d-p model is approximately mapped to the t-J
model or the t-J-infinite-U model,46

Ht-J = 	
ij�

tijdi�
† dj� −

1

2
J	

ij�
�Si · S j� + U�	

i

di↑
† di↑di↓

† di↓.

�2.12�

with the summation over ij� indicating that the summation
should be made over nearest neighbors and

Si = 	
�

1

2
��di�

† di. �2.13�

The carrier density per unit cell is defined by
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n =
1

N
	

i

di�
† di�� . �2.14�

It should be noted that the infinitely large on-site repulsion
U� is introduced to exclude double occupancy so that n can
never be larger than unity, or 0�n�1. The electron and hole
pictures should be taken for the so called hole-doped
�n�1� and electron-doped �n�1� cuprate oxide supercon-
ductors, respectively, so that n is the electron density for
hole-doped ones and is the hole density for electron-doped
ones. The doping concentration is defined by �=1−n, and
the optimal concentration, where superconducting Tc is the
highest as a function of �, is ��0.15. Then, ��0.15 and
��0.15 are called underdoped and overdoped concentra-
tions, respectively. When transfer integrals between nearest
and next-nearest neighbors, which are denoted by t and t�,
are only considered, the dispersion relation of electrons or
holes is given by

E�k� = 2t�cos�kxa� + cos�kya�� + 4t�cos�kxa�cos�kya� .

�2.15�

According to band calculations,43–45 it follows that
t=−�0.3–0.5� eV and t��−0.3t for electrons in hole-doped
cuprate oxide superconductors and t=−�0.3–0.5� eV and
t�� +0.3t for holes in electron-doped ones.

Every physical quantity is divided into single-site and
multisite terms. Calculating the single-site term is reduced to
determining and solving self-consistently the Anderson
model, as is discussed in the Introduction. When it is
assumed that there is no order parameter, for example,
the self-energy of electrons is divided into single-site and
multisite self-energies,

���i�n,k� = �̃��i�n� + ����i�n,k� . �2.16�

The single-site self-energy �̃��i�n� is given by that of the
Anderson model. It is expanded as

�̃��� + i0� = �̃0 + �1 − �̃��� + �1 − �̃s�
1

2
�g�BH + O��2�

�2.17�

at T=0 K in the presence of an infinitesimally small Zeeman
energy g�BH, with g the g factor and �B the Bohr magneton.

The expansion coefficients �̃0, �̃�, and �̃s are all real;
�̃s�2�̃��1 for n�1. When Eq. �2.17� is used and the
multisite self-energy is ignored, the dispersion relation of the
Gutzwiller quasiparticles is given by

���k� =
1

�̃�

��̃0 + E�k� − �� −
1

2
�W̃sg�BH , �2.18�

with

W̃s = �̃s/�̃� �2.19�

being the so called Wilson ratio for the Kondo problem.
The irreducible polarization function in spin channels

is also divided into single-site and multisite polarization
functions,

�s�i�l,q� = �̃s�i�l� + ��s�i�l,q� . �2.20�

The single-site polarization function �̃s�i�l� is given by that
of the Anderson model. The spin susceptibilities of the
Anderson and t-J models are given, respectively, by

�̃s�i�l� =
2�̃s�i�l�

1 − U��̃s�i�l�
�2.21�

and

�s�i�l,q� =
2�s�i�l,q�

1 − �1

4
J�q� + U���s�i�l,q�

, �2.22�

with

J�q� = 2J�cos�qxa� + cos�qya�� . �2.23�

In Eqs. �2.21� and �2.22�, the conventional factor 1
4g2�B

2 is
not included. A physical picture for Kondo lattices is that
local spin fluctuations at different sites interact with each
other by an intersite exchange interaction. In Kondo-lattice
theory, therefore, an intersite exchange interaction Is�i�l ,q�
is defined by

�s�i�l,q� =
�̃s�i�l�

1 −
1

4
Is�i�l,q��̃s�i�l�

. �2.24�

It follows that

Is�i�l,q� = J�q� + 2U�
2 ��s�i�l,q� . �2.25�

The derivation of Eq. �2.25� from Eqs. �2.21� and �2.22� is
rigorous because ignored terms, which are O�1/U��̃s�i�l��,
vanish for infinitely large U�. The term of 2U�

2 ��s�i�l ,q� is
composed of two terms,47

2U�
2 ��s�i�l,q� = JQ�i�l,q� − 4��i�l,q� . �2.26�

The first term JQ�i�l ,q� is an exchange interaction arising
from the virtual exchange of a pair excitation of the
Gutzwiller quasiparticles. According to the Ward relation,48

the static component of the single-site irreducible vertex
function in spin channels is given by

	̃s = �̃s�1 − U��̃s�0�� . �2.27�

Then, it follows that

U�	̃s = 2�̃s/�̃s�0� . �2.28�

When the vertex correction 	̃s given by Eq. �2.28� is used, it
follows that

JQ�i�l,q� =
4W̃s

2

�̃s
2�0��P�i�l,q� −

1

N
	
q

P�i�l,q�� ,

�2.29�

with
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P�i�l,q� =
1

N
	
k�

f ����k�� − f ����k + q��
���k + q� − ���k� + i�l

, �2.30�

with

f��� =
1

e�/kBT + 1
. �2.31�

In Eq. �2.29�, the single-site term is subtracted because it is
considered in the SSA. The strength of the exchange inter-
action is proportional to the width of the Gutzwiller band.
Since the chemical potential lies around the center of the
Gutzwiller band or the nesting of the Fermi surface is sharp,
the exchange interaction is antiferromagnetic �AF� in cuprate
oxide superconductors. The second term −4��i�l ,q� corre-
sponds to the mode-mode coupling term in the self-
consistent renormalization theory of spin fluctuations,49

which is relevant in the weak-coupling regime for electron
correlations defined by U /W�1.

When Eq. �2.28� is used, the mutual interaction mediated
by intersite spin fluctuations, which works between the
Gutzwiller quasiparticles, is given by

�U�	̃s�2��s�i�l,q� − �̃s�i�l�� = �̃s
2Is

*�i�l,q� , �2.32�

with

Is
*�i�l,q� =

Is�i�l,q�

1 −
1

4
Is�i�l,q��̃s�i�l�

. �2.33�

In Eq. �2.32�, the single-site term is subtracted because it is
considered in the SSA. The exchange interaction Is�i�l ,q� is
enhanced into Is

*�i�l ,q� by spin fluctuations. The mutual in-
teraction mediated by spin fluctuations is essentially the
same as that due to the exchange interaction Is�i�l ,q� or
Is

*�i�l ,q�.
In Kondo-lattice theory, an unperturbed state is con-

structed in the nonperturbative SSA theory, and multisite or
intersite effects are perturbatively considered in terms of
Is�i�l ,q� or Is

*�i�l ,q�.

III. SOFTENING OF PHONONS DUE TO
ANTIFERROMAGNETIC SPIN

FLUCTUATIONS

An effective Hamiltonian to be eventually examined in
this paper is

H = Ht-J + Hph + Hp + Hd, �3.1�

with

Hph = 	
	q

�	q�b	q
† b	q +

1

2
� , �3.2�

and Hp and Hd defined by Eqs. �2.8� and �2.9�, respectively.
The t-J model Ht-J is defined on a square lattice in Sec. II B,
but it should be defined on a quasi-two-dimensional lattice
here. Although no interlayer coupling is included in Ht-J, the
nature of quasi-two-dimensional AF spin fluctuations is

phenomenologically considered, which plays one of the most
crucial roles in the softening of Cu-O bond stretching modes,
as is examined below.

In the absence of Hp and Hd, the Green function for
phonons is given by

D	
�0��i�l,q� =

2�	q

�i�l�2 − �	q
2 . �3.3�

When the self-energy for phonons is denoted by
�	

�ph��i�l ,q�, which can be perturbatively calculated in terms
of Hp and Hd, the renormalized Green function for phonons
is given by

D	�i�l,q� = D	
�0��i�l,q� + D	

�0��i�l,q��	
�ph��i�l,q�D	�i�l,q�

=
2�	q

�i�l�2 − �	q
2 − 2�	q�	

�ph��i�l,q�
. �3.4�

The renormalized energy of phonons, which is denoted by
�	q

* , is given by

��	q
* �2 − �	q

2 − 2�	q�	
�ph���	q

* + i0,q� = 0. �3.5�

The renormalization of phonon energies is given by

��	q = �	q
* − �	q

= �	
�ph���	q + i0,q�

− ��	
�ph���	q + i0,q��2/2�	q + ¯ , �3.6�

unless ��	
�ph���	q+ i0,q�� is larger than ��	q�.

In addition to AF spin fluctuations that are developed
around Q due to Is�i�l ,q�, d�-wave superconducting �SC�
and charge bond order �CBO� fluctuations are also developed
due to Is�i�l ,q� or Is

*�i�l ,q�. Although charge fluctuations
are never developed much, charge-channel fluctuations can
also contribute to the softening of phonons, as well as AF,
SC, and CBO fluctuations, provided that vertex corrections
for the dual spin operator in spin, SC, and CBO channels are
properly treated. According to the previous paper,36 the soft-
ening of the half-breathing modes is mainly caused by the
charge-channel fluctuations. Since the charge-channel fluc-
tuations are significant in the metallic phase, the softening is
large in the metallic phase but is small in the insulating
phase.

Since phonons can couple with two lines or two channels
of spin fluctuations to the lowest or first order in the dual-
spin operator, as is shown in Eqs. �2.8� and �2.9�, AF spin
fluctuations around �±3� /4a , ±� /a� and �±� /a , ±3� /4a�
in 2DBZ can play a significant role in the softening of
Cu-O bond stretching modes around �±� /2a ,0� and
�0, ±� /2a� in 2DBZ. According to Mermin and Wagner,50 if
the Néel temperature TN were nonzero in two dimensions,
integrated effects of two-dimensional critical AF spin fluc-
tuations would be divergent at TN, which leads to a conclu-
sion that TN must be zero in two dimensions. Their argument
implies that quasi-two-dimensional critical AF spin fluctua-
tions can play a crucial role in the softening, at least, in an
AF critical region of cuprate oxide superconductors provided
that the anisotropy of critical AF spin fluctuations is large. In
order to examine how crucial a role the anisotropy plays in
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the softening, it is more convenient to use a phenomenologi-
cal expression for the spin susceptibility, which includes ex-
plicitly the anisotropy factor for AF spin fluctuations, than to
calculate microscopically the spin susceptibility for quasi-
two-dimensional systems. The superexchange interaction
J�q�, which is given by Eq. �2.23�, has broad peaks at
�±� /a , ±� /a� in 2DBZ, and the exchange interaction
JQ�0,q�, which is given by Eq. �2.29�, has sharp peaks at
nesting wave numbers of the Fermi surface.Therefore, it is
assumed in this paper that Is�0,q� is maximal at Q
= �±3� /4a , ±� /a ,Qz� and �±� /a , ±3� /4a ,Qz� or that
�s�0,q� is maximal at Q, and that the spin susceptibility
�2.24� is approximately but well described by

�s�i�l,Q + q� =
�s�0,Q��2

�2 + �q�a�2 + � 2�qzc�2 +
��l�
�AF

, �3.7�

around each of the Q’s, with q� = �qx ,qy� being the compo-
nent parallel to CuO2 planes, qz the component perpendicular
to CuO2 planes, c the lattice constant along the z axis, and
�AF the energy scale of AF spin fluctuations. The anisotropy
factor � is introduced to consider quasi-two-dimensional AF
spin fluctuations. The correlation length within the x-y plane
is a /� and that along the z axis is �c /�. A cutoff qc=� /3a is
introduced in such a way that �s�i�l ,Q+q�=0 for �qx � �qc

or �qy � �qc. The anisotropy of the lattice constants plays no
role when � and qc are defined in these ways.

When AF spin fluctuations are only considered, the
self-energy for phonons is given by36

�	
�ph��i�l,q� = −


2

2Mp�	q

3

42 	
���

Y��q�Y���q�X����i�l,q� ,

�3.8�

with

Y��q� = �̄s�q��Cpvp,	q���1

2
q� + Cdvd,	q
Mp

Md
�

�3.9�

and

X����i�l,q� =
kBT

N
	
�l�p

���p�����p��s�i�l�,p +
1

2
q�

��s�− i�l� − i�l,− p +
1

2
q� . �3.10�

In Eq. �3.10�, two �s’s appear because of the dual-spin op-
erator. It should be noted that 2Q’s are equivalent to
�±� /2a ,0� and �0, ±� /2a�: 2Q−G= �±� /2a ,0� and
�0, ±� /2a�, with G= �±2� /a ,0� and �0, ±2� /a� being
reciprocal-lattice vectors in 2DBZ. Then, Cu-O bond-
stretching modes around �±� /2a ,0� and �0, ±� /2a� in
2DBZ can be soft provided that AF fluctuations around
Q= �±3� /4a , ±� /a� and �±� /a , ±3� /4a� in 2DBZ are
developed.

Since Cu-O bond-stretching modes around 2Q are consid-
ered, the vibrations of Cu ions are ignored, that is, it is
assumed that

�Cdvd,	q�
Mp/Md = 0 �3.11�

and

�Cpvp,	q� = cp eV/Å, �3.12�

where cp is a dimensionless constant, and it is likely that36

cp = O�1� . �3.13�

Since the contribution from small p is large in the summa-
tion over p in Eq. �3.10�, only the contribution from the
�=s channel is considered. Then, it follows that

�	
�ph���	q + i0,q� = − Aq���	q + i0,q� , �3.14�

with

Aq =

2

2Mp�	q

3

42�AF��s�0,Q��2�2�Cpvp,	q�2 �3.15�

and

���	q + i0,q� = �̄s
2�q��s

2�1

2
q�Xss��	q + i0,q�

�AF��s�Q��2�2 .

�3.16�

It should be noted that ��i�l ,q� is defined as a dimension-
less quantity. The effective transfer integral between nearest
neighbors for the Gutzwiller quasiparticles is

t* = t/�̃�. �3.17�

According to Eq. �1.1�, a plausible number for t* is

�t*� � W*/8 � 40–50 meV. �3.18�

According to a microscopic calculation for the spin suscep-
tibility, it follows that �AF/ �t* � =O�1� and �s�0,Q��2 � t* �
=O�1�. It is assumed, for the sake of simplicity, that the
energy of Cu-O bond-stretching modes is constant and is as
large as

�	q = 50 meV. �3.19�

Then, Aq defined by Eq. �3.15� is approximately given by

Aq � 10 � cp
2 �AF

�t*�
��s�0,Q��2�t*��2 meV � 10cp

2 meV.

�3.20�

In this paper, T=0 K is assumed in the �l� sum of Eq. �3.10�.
The softening around one of 2Q’s or 2Q0, with

Q0= �−3� /4a ,� /a� in 2DBZ, is considered; 2Q0 is equiva-
lent to �� /2a ,0�. Figure 1 shows the dependence of ���	q
+ i0,q� on �, �, �AF, and q; Figs. 1�a� and 1�b� show
Re����	q+ i0,2Q0�� as a function of �2 and Re����	q
+ i0,q�� as a function of qx, respectively, for several sets of �
and �	q /�AF. According to Fig. 1�b�, ���	q+ i0,q� has a
maximum, that is, Re��	

�ph���	q+ i0,q�� has a minimum
around 2Q0 as a function of q. According to Eq. �3.20�,
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Fig. 1�a�, and Fig. 1�b�, it is likely that the softening at 2Q0

is as large as −�10–20� meV for �2�1 and ��1. It should
be noted that the softening can only be large provided that
�2�1 and ��1, as is implied by Mermin and Wagner’s
argument;50 integrated effects on the softening are never di-
vergent, even in the limit of �→0 and �→0.

It is definite that �2�1 in the critical region of antiferro-
magnetic ordering or spin density wave �SDW�, and it is
certain that the anisotropy is as large as ��10−3 in cuprate
oxide superconductors. Then, the second-harmonic effect of
AF spin fluctuations can explain the observed softening7,8 as
large as −�10−20� meV around 2Q0 or 2Q.

Since the softening is small when �2 is large or AF
spin fluctuations are not developed, it must be small in over-
doped cuprate oxide superconductors, whose doping concen-
trations are larger than those of optimal-doped ones. When
AF spin fluctuations are developed similarly or differently
between �±3� /4a , ±� /a� and �±� /a , ±3� /4a� because of
the anisotropy of the Fermi surface within 2DBZ, the soft-
ening must also occurs similarly or differently between the x
and y axes or between �±� /2a ,0� and �0, ±� /2a�. These
two predictions are consistent with observations.7,8

IV. STRIPES AND CHECKERBOARDS

Since the 4a-period and �4a�4a�-period correspond to
2Q, with Q= �±3� /4a , ±� /a� and �±� /a , ±3� /4a�, a plau-
sible scenario for the stripes and checkerboards is that the
complete softening is followed by the stabilization of CDW
with 2Q. In general, the 2Q component of the density of
states, �2Q���, as a function of � is composed of symmetric
and asymmetric components with respect to the chemical
potential or �=0. The asymmetric component is large when
CDW with 2Q is stabilized as a fundamental 2Q effect. Ac-
cording to an experiment,37 the symmetric component is
larger than the asymmetric one, which contradicts the sce-
nario of CDW even if the softening of the 2Q modes is large
and the 2Q fluctuations are well developed. On the other
hand, the symmetric component is large when the 2Q modu-
lation is due to a simple second-harmonic effect of an or-
dered SDW with Q.51 The second-harmonic effect of the
SDW can explain the observed almost symmetric �2Q���.
When stripes and checkerboards are really static orders,
stripes must be due to single-Q SDW and checkerboards
must be due to double-Q SDW. It is predicted that magneti-
zations of the two waves must be orthogonal to each other in
double-Q SDW.52,53 It is interesting to examine whether the
prediction actually holds in cuprate oxide superconductors.

The appearance or stabilization of SDW is a transition
rather than a crossover. However, no specific-heat anomaly
has been reported so far except for the anomaly due to su-
perconductivity. The absence of any specific-heat anomaly
implies that, even if SDW is stabilized, SDW is never a
homogeneous phase but is an inhomogeneous phase, which
is composed of many domains. If the transition temperatures
of SDW can be different in different domains, no significant
specific anomaly can be observed. It is plausible that SDW is
a disorder-induced SDW.47

On the other hand, it is proposed42 that a stripe or a check-
erboard at rather high temperatures must be an exotic or-
dered state, that is, a fluctuating state in a quantum disor-
dered phase. It should be examined whether it is actually
such an exotic state. Another possibility is that it is a rather
normal low-energy fluctuating state, whose energy scale is as
small as that of the soft phonons. The other possibility is the
disorder-induced SDW,47 which can behave as a fluctuating
state because it is inhomogeneous.

V. ATTRACTIVE INTERACTION

Although the electron-phonon interaction plays no or only
a minor role in the formation of d�-wave Cooper pairs, as is
discussed in the Introduction, isotope shifts of Tc can arise
from the depression of superconductivity by the 2Q fluctua-
tions, whose development depends on the mass of O ions.

In Kondo-lattice theory, cuprate oxide superconductors
can be relevantly treated as one of the typical Kondo lattices.
According to Eq. �2.32�, which is one of the most crucial
results of Kondo-lattice theory, two mechanisms of attractive
interactions, namely the spin-fluctuation mechanism and the
exchange-interaction mechanism, are essentially the same.
However, the attractive interaction mediated by low-energy

FIG. 1. �a� Re����	q+ i0,2Q0�� as a function of �2, with
Q0= �−3� /4a ,� /a�, and �b� Re����	q+ i0,q�� as a function of
qx �−2� /a�qx�−� /a� for qy =2� /a. For the anisotropy factor, �i�
�=1, �ii� �=10−1/2, �iii� �=10−1, and �iv� �=10−3. In each figure,
solid, dotted, dashed, and dashed chain lines are for �	q /�AF=0.2,
0.4, 0.8, and 1.6, respectively.
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spin fluctuations such as those observed by low-energy neu-
tron inelastic scatterings or those described by the phenom-
enological spin susceptibility �2.24� is physically different
from the attractive interaction due to the superexchange in-
teraction, which arises from the exchange of a pair excitation
of electrons in spin channels across the Hubbard gap because
the energy scales of spin fluctuations or spin excitations are
totally different from each other in the two physical pro-
cesses. The main part of the attractive interaction in cuprate
oxide superconductors must be the superexchange interac-
tion rather than the interaction mediated by low-energy AF
spin fluctuations. Since the superexchange interaction is as
strong as J=−�0.10–0.15� eV,33 observed high Tc can be
easily reproduced, as is discussed in the Introduction.

VI. CONCLUSION

In cuprate oxides superconductors, the electron-phonon
interaction arising from the modulation of the superexchange
interaction by lattice vibrations is strong enough to cause
the softening of not only the half-breathing modes around
�±� /a ,0� and �0, ±� /a� in the two-dimensional Brillouin

zone, but also Cu-O bond-stretching modes around
�±� /2a ,0� and �0, ±� /2a�. Although the softening of
the bond-stretching modes is responsible for stripe and
checkerboard fluctuations in charge channels, the stabiliza-
tion of a charge-density wave state following the complete
softening of the bond-stretching modes can never be any
relevant scenario for ordered stripe and checkerboard states.
The ordered stripe or checkerboard state must be simply a
single-Q or double-Q spin-density-wave state, whose Q’s
are �±3� /4a , ±� /a� and �±� /a , ±3� /4a�. The strong
electron-phonon interaction can play no or only a minor role
in the binding of d�-wave Cooper pairs in cuprate oxide
superconductors, because the attractive interaction arising
from the virtual exchange of a phonon is never strong be-
tween quasiparticles on nearest-neighbor Cu ions on a CuO2
plane. However, isotope shifts of Tc can arise from the de-
pression of superconductivity by the stripe or checkerboard
fluctuations. Since the superexchange interaction is as strong
as J=−�0.10–0.15� eV between nearest-neighbor Cu ions,
the superexchange interaction must be mainly responsible for
the binding of the d�-wave Cooper pairs in cuprate oxide
superconductors.
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