1,877 research outputs found
Sexual conflict over copula timing: a mathematical model and a test in the yellow dung fly
Sexual conflict over mating occurrence, timing, or duration is common in animals. This explains conspicuous female mate rejection behavior in many species, often involving shaking, fighting, and occasional forced copulations. We present a simple model that generates predictions about whether and when copulation occurs in such conflict situations and how much female rejection behavior should be observed. Predictions depend on 2 underlying parameters affecting female resistance and male persistence. We supply 2 qualitative tests of the model using the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae). We manipulated adult age, body size (large and small), and adult food availability (low and high), independently in males and females, staging replicate pairings of all treatment combinations. In agreement with predictions of our model, shaking duration first increased to a maximum at intermediate age, when the average female copulated, and then decreased again. Contrary to expectation, body size did not affect copulation timing, female resistance, or male persistence. As predicted, adult food limitation delayed sexual maturity and hence prolonged female resistance, resulting in later copulations after more shaking. However, although food limitation equally delayed the increase in male persistence with age, copulation also occurred later after more shaking, opposite to the model prediction. We conclude that shaking is driven primarily by female age and male responses to it. Although female shaking can initially successfully deter males in S. stercoraria, this behavior is subtle and has apparently shifted function from an effective means of mate choice to a signal of nonreceptivity, though its importance in nature remains unclea
The Karyotype of the Yellow Dung Fly, Scathophaga stercoraria, a Model Organism in Studies of Sexual Selection
Knowledge of karyotypical characteristics of a species is essential for understanding how sexually selected and sexually antagonistic traits evolve. The yellow dung fly Scathophaga stercoraria L. (Diptera: Scathophagidae) is an established model system for studies of sexual selection and sexual conflict, but karyotypical data are lacking to date. Here, the karyotype of S. stercoraria was characterized using conventional Giemsa-staining and C-banding techniques. The diploid chromosome set consists of 6 pairs of bi-armed meta- or submetacentric chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males. Males are the heterogametic sex, and the length of the Y chromosome is about three-quarters of that of the X chromosome. C-banding revealed that both sex chromosomes are largely heterochromatic. In contrast, in the five autosome pairs, heterochromatin is limited to narrow bands in the centromeric regions. This karyotypic information will help provide a more profound understanding of the inheritance of phenotypic variation in reproductive traits and the chromosomal locations of underlying genes
Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse
Background: Secretion of gonadotropin-releasing hormone (GnRH) produced in neurons in the basal forebrain is the primary regulator of reproductive maturation and function in mammals. Peptidergic signals relating to circadian timing and energy balance are an important influence on the reproductive axis. The aim of this study was to investigate the innervation of GnRH neurons by peptidergic neurons. Methodology/Principal Findings: Immunohistochemistry and confocal microscopy were used to detect appositions of peptidergic fibers (NPY, Ξ²-endorphin, MCH) associated with energy balance and metabolic status in transgenic mice expressing a green fluorescent protein reporter construct in GnRH neurons. The frequency of these appositions was compared to those of vasoactive intestinal peptide (VIP), a hypothalamic neuropeptide likely to convey circadian timing information to the GnRH secretory system. The majority of GnRH neurons (73-87%) were closely apposed by fibers expressing NPY, Ξ²-endorphin, or MCH, and a significant proportion of GnRH neurons (28%) also had close contacts with VIP-ir fibers. Conclusions/Significance: It is concluded that GnRH neurons in the mouse receive a high frequency of direct modulatory inputs from multiple hypothalamic peptide systems known to be important in conveying circadian information and signalling energy balance. Β© 2009 Ward et al
Sexual conflict selects for male and female reproductive characters.
BACKGROUND: Strict genetic monogamy leads to sexual harmony because any trait that decreases the fitness of one sex also decreases the fitness of the other. Any deviation from monogamy increases the potential for sexual conflict. Conflict is further enhanced by sperm competition, and given the ubiquity of this phenomenon, sexual conflict is rife. In support of theory, experimentally enforced monogamy leads to the evolution of sexual benevolence. In contrast, with multiple mating, males evolve traits causing massive female fitness reductions when female evolution is restrained. Theory also predicts increased investment in spermatogenesis when sperm competition risk is high. While this supposition has correlational support, cause and effect has yet to be firmly established. RESULTS: By enforcing monogamy or polyandry in yellow-dung-fly lines, we have shown experimentally that males from polyandrous treatments evolved larger testes. Furthermore, females from this treatment evolved larger accessory sex glands. These glands produce a spermicidal secretion, so larger glands could increase female ability to influence paternity. Using molecular techniques, we have shown that, consistent with this idea, males' success as second mates is reduced in females from the polyandrous treatment. Nevertheless, males from polyandrous lines achieve higher paternity during sperm competition, and this finding further supports the testis evolution patterns. CONCLUSIONS: These results provide direct experimental support for macroevolutionary patterns of testis size evolution. Furthermore, we have shown that sperm competition selects for traits likely to be important in sexual conflicts over paternity, a result only previously demonstrated in Drosophila melanogaster
Greater priming for previously distracting information in young than older adults when suppression is ruled out
The use of previously distracting information on memory tests with indirect instructions is usually age-equivalent, while young adults typically show greater explicit memory for such information. This could reflect qualitatively distinct initial processing (encoding) of distracting information by younger and older adults, but could also be caused by greater suppression of such information by younger adults on tasks with indirect instructions. In Experiment 1, young and older adults read stories containing distracting words, which they ignored, before studying a list of words containing previously distracting items for a free recall task. Half the participants were informed of the presence of previously distracting items in the study list prior to recall (direct instruction), and half were not (indirect instruction). Recall of previously distracting words was age-equivalent in the indirect condition, but young adults recalled more distracting words in the direct condition. In Experiment 2, participants performed the continuous identification with recognition task, which captures a measure of perceptual priming and recognition on each trial, and is immune to suppression. Priming and recognition of previously distracting words was greater in younger than older adults, suggesting that the young engage in more successful suppression of previously distracting information on tasks in which its relevance is not overtly signaled
Electrochemical Quantification of D-Glucose during the Production of Bioethanol from Thermo-Mechanically Pre-treated Wheat Straw
Mechanical pre-treatment (disc refining) of wheat straw, at both atmospheric and elevated pressure, is shown to be an efficient process to access fermentable monosaccharides, with the potential to integrate within the infrastructure of existing first-generation bioethanol plants. The mild, enzymatic degradation of this sustainable lignocellulosic biomass affords ca. 0.10-0.13 g/g (dry weight) of D-glucose quantifiable voltammetrically in real time, over a two hundred-fold range in experimental laboratory scales (25 mL to 5.0 L), with pressure disc refining of the wheat straw enabling almost twice the amount of D-glucose to be generated during the hydrolysis stage than experiments using atmospheric refining (0.06 β 0.09 g/g dry weight). Fermentation of the resulting hydrolysate affords 0.08 β 0.10 g/g (dry weight) of ethanol over similar scales, with ethanol productivity at ca. 37 mg/(L h). These results demonstrate that minimal cellulose decomposition occurs during pressure refining of wheat straw, in contrast to hemicellulose, and suggest that the development of green, mechanochemical processes for the scalable and cost-effective manufacture of second-generation bioethanol requires improved cellulose decomposition
Regulation of neutrophil senescence by microRNAs
Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease
Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarials
Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of
RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological
actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria
- β¦