27,600 research outputs found

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    Type I planetary migration in a self-gravitating disk

    Full text link
    We investigate the tidal interaction between a low-mass planet and a self-gravitating protoplanetary disk, by means of two-dimensional hydrodynamic simulations. We first show that considering a planet freely migrating in a disk without self-gravity leads to a significant overestimate of the migration rate. The overestimate can reach a factor of two for a disk having three times the surface density of the minimum mass solar nebula. Unbiased drift rates may be obtained only by considering a planet and a disk orbiting within the same gravitational potential. In a second part, the disk self-gravity is taken into account. We confirm that the disk gravity enhances the differential Lindblad torque with respect to the situation where neither the planet nor the disk feels the disk gravity. This enhancement only depends on the Toomre parameter at the planet location. It is typically one order of magnitude smaller than the spurious one induced by assuming a planet migrating in a disk without self-gravity. We confirm that the torque enhancement due to the disk gravity can be entirely accounted for by a shift of Lindblad resonances, and can be reproduced by the use of an anisotropic pressure tensor. We do not find any significant impact of the disk gravity on the corotation torque.Comment: 42 pages, 17 figures, accepted for publication in Ap

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    Deflectable beam linear strip cesium contact ion thruster system

    Get PDF
    Deflectable dual beam, linear strip cesium contact, ion thruster system design and performance testin

    Measures Matter: Scales for Adaptation, Cultural Distance, and Acculturation Orientation Revisited

    Get PDF
    Building upon existing measures, four new brief acculturation scales are presented, measuring sociocultural adaptation, psychological adaptation, perceived cultural distance, and acculturation orientation. Following good scale reliability in initial samples, the English scales were translated into nine different languages (Chinese, French, German, Italian, Japanese, Portuguese, Spanish, Thai, and Turkish). The translated scales were administered to a large sample of sojourners (N = 1,929), demonstrating good reliability and adequate structural equivalence across languages. In line with existing theory, sociocultural adaptation and psychological adaptation were positively correlated, and showed a negative association with perceived cultural distance. General measures of well-being were correlated with adaptation and distance, with better adaptation relating to higher well-being, and more distance relating to lower well-being. Acculturation orientation toward the home and host culture were measured separately and a weak negative correlation was found between the two, supporting their independence. Arguing against dichotomization, these subscales were analyzed as continuous variables. Regression analysis showed sojourners to be better adapted, if they were oriented more toward the host culture and less toward the home culture. These new scales are proposed as alternatives to existing measures

    The malleability of uranium: manipulating the charge-density wave in epitaxial films

    Get PDF
    We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the a-axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the current theory for the electron-phonon coupling in the uranium lattice. Our results emphasize the intriguing possibilities of producing epitaxial films of elements that have complex structures like the light actinides uranium to plutonium.Comment: 6 pages, 6 figure

    Levels of genetic polymorphism: marker loci versus quantitative traits

    Get PDF
    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species

    How Observations of Circumstellar Disk Asymmetries Can Reveal Hidden Planets: Pericenter Glow and its Application to the HR 4796 Disk

    Get PDF
    Recent images of the disks of dust around the young stars HR 4796A and Fomalhaut show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a forced eccentricity of 0.01 or higher would be imposed on a disk in a system in which there are planets, but no binary companion, the corresponding asymmetry in the disk's structure could serve as a sensitive indicator of these planets that might otherwise remain undetected.Comment: 61 pages, 10 figures, accepted for publication in the Astrophysical Journal (scheduled for January 10, 2000
    • 

    corecore