25 research outputs found

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    Investigation of herb-drug interactions with ginkgo biloba in women receiving hormonal treatment for early breast cancer

    Get PDF
    Women receiving treatment for breast cancer commonly ingest herbal medicines. Little is known about the potential for herb-drug interactions in this population. The aim of this study is to investigate the effect of ginkgo biloba co-administration on the pharmacokinetics of tamoxifen, anastrozole and letrozole. This was a prospective open-label cross-over study in 60 women with early stage breast cancer taking either tamoxifen, anastrozole or letrozole (n=20/group). Participants received ginkgo biloba (EGb 761) for 3 weeks (120 mg twice daily). Trough concentrations of drugs were measured before and after ginkgo biloba treatment using LC-MS/MS. Toxicities were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events. Trough concentrations before and after treatment with ginkgo biloba were not significantly different for tamoxifen (93.5 ± 29.0, 86.5 ± 25.3 ng/mL; p=0.16), letrozole (91.1 ± 50.4, 89.6 ± 52.14 ng/mL; p=0.60) or anastrozole (29.1 ± 8.6, 29.1 ± 7.6 ng/mL; p=0.97). Ginkgo biloba was well tolerated, with no difference in toxicity during ginkgo biloba. Co-administration of ginkgo biloba does not significantly affect the pharmacokinetics of tamoxifen, anastrozole or letrozole. There was no difference in the toxicity profile of hormone therapy with ginkgo biloba use in women with early stage breast cancer

    One-carbon metabolites, B vitamins and associations with systemic inflammation and angiogenesis biomarkers among colorectal cancer patients:results from the ColoCare Study

    Get PDF
    B-vitamins involved in one-carbon metabolism have been implicated in the development of inflammation- A nd angiogenesis-related chronic diseases, such as colorectal cancer. Yet, the role of one-carbon metabolism in inflammation and angiogenesis among colorectal cancer patients remains unclear.The objective of this study was to investigate associations of components of one-carbon metabolism with inflammation and angiogenesis biomarkers among newly diagnosed colorectal cancer patients (n=238) in the prospective ColoCare Study, Heidelberg.We cross-sectionally analyzed associations between 12 B-vitamins and one-carbon metabolites and 10 inflammation and angiogenesis biomarkers from pre-surgery serum samples using multivariable linear regression models. We further explored associations among novel biomarkers in these pathways with Spearman partial correlation analyses. We hypothesized that pyridoxal-5'-phosphate (PLP) is inversely associated with inflammatory biomarkers.We observed that PLP was inversely associated with CRP (r=-0.33, plinearlinear=0.003), IL-6 (r=-0.39, plinear linear=0.02) and TNFα (r=-0.12, plinear=0.045). Similar findings were observed for 5-methyl-tetrahydrofolate and CRP (r=-0.14), SAA (r=-0.14) and TNFα (r=-0.15) among colorectal cancer patients. Folate catabolite apABG was positively correlated with IL-6 (r= 0.27, plinearlinear<0.0001), indicating higher folate utilization during inflammation.Our data support the hypothesis of inverse associations between PLP and inflammatory biomarkers among colorectal cancer patients. A better understanding of the role and inter-relation of PLP and other one-carbon metabolites with inflammatory processes among colorectal carcinogenesis and prognosis could identify targets for future dietary guidance for colorectal cancer patients.</p

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Pseudoprogression associated with clinical deterioration and worsening quality of life in malignant pleural mesothelioma

    No full text
    Malignant pleural mesothelioma (MPM) is an aggressive asbestos-related malignancy with limited treatment options. Immune checkpoint inhibition has demonstrated promising activity in MPM with the use of single-agent pembrolizumab in a mostly chemotherapy-resistant population.1 Here we report significant responses to pembrolizumab after pseudoprogression in two patients with MPM and corresponding patient-reported outcomes (PROs) related to quality of life

    Does Huntingtin play a role in selective macroautophagy?

    No full text
    The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In huntington disease (HD), a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease. We have recently found that Htt is phosphorylated by the kinase IKK on serine (s) 13, activating its phosphorylation on S16 and its acetylation and poly-SUMOylation, modifications that modulate its clearance by the proteasome and lysosome in cells.1 In the discussion here I suggest that Htt may have a normal function in the lysosomal mechanism of selective macroautophagy involved in its own degradation which may share some similarity with the yeast cytoplasm to vacuole targeting (Cvt) pathway. Pharmacologic activation of this pathway may be useful early in disease progression to treat HD and other neurodegenerative diseases characterized by the accumulation of disease proteins
    corecore