43 research outputs found

    The REST/NRSF pathway as a central mechanism in CNS dysfunction

    Get PDF
    Deciphering the complex molecular circuitry of the brain is crucial for understanding how processes such as higher cognitive function and behaviour are disrupted in neurological disease. Thus it is imperative to explore further the regulatory mechanisms centred on key transcription factors that orchestrate such processes including REST/NRSF (restrictive element-1 silencing transcription factor/neuron restrictive silencing factor); NRSF targets over 2,000 human genes and plays a central and dynamic role in a myriad of CNS processes. To address the function of NRSF, I employed several research disciplines including bioinformatics, gene association studies for complex polygenic diseases and model systems for understanding the structure and function of several NRSF directed pathways in the CNS. My data demonstrated that disruption of the normal balance of NRSF within the cell may be a fundamental mechanism across a range of common neuropathologies. These included 1) schizophrenia, where NRSF was shown to be capable of directing allele-specific and stimulus-driven expression of MIR137 through identification of a novel promoter in this key schizophrenia genome wide associated gene; 2) cognitive dysfunction, polymorphisms within NRSF and its gene target BDNF influenced memory performance in patients with newly diagnosed epilepsy; 3) mood disorders, NRSF-signalling was identified as a significant pathway regulating cellular processes relevant to mood modification by pharmaceutical challenge and 4) NRSF-mediated regulation of microRNA-137 (miR-137) expression was demonstrated in vivo using a model of cortical spreading depression, consistent with its involvement in associated neuropathologies including epilepsy and ischemia. The analysis was expanded to a common non-neurological disease, breast cancer, where the previous work of others was extended to demonstrate a link between NRSF and miR-137 through the novel promoter identified in this study. Collectively these findings emphasise NRSF as a major contributor to cell pathogenesis, in part by modulation of miR-137, not only in a neuronal context but also in other systems

    A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression

    Get PDF
    Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterised an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk

    The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation.

    Get PDF
    The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation.IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription

    Novel brain expressed RNA identified at the MIR137 schizophrenia-associated locus

    Get PDF
    AbstractGenome-wide association studies (GWAS) have identified a locus on chromosome 1p21.3 to be highly associated with schizophrenia. A microRNA, MIR137, within this locus has been proposed as the gene causally associated with schizophrenia, due to its known role as a regulator of neuronal development and function. However, the involvement of other genes within this region, including DPYD (dihydropyrimidine dehydrogenase), is also plausible. In this communication, we describe a previously uncharacterised, brain-expressed RNA, EU358092, within the schizophrenia-associated region at 1p21.3. As we observed for MIR137, EU358092 expression was modulated in response to psychoactive drug treatment in the human SH-SY5Y neuroblastoma cell line. Bioinformatic analysis of publically available CNS expression data indicates that MIR137 and EU358092 are often co-expressed in vivo. A potential regulatory domain for expression of EU358092 is identified by bioinformatic analysis and its regulatory function is confirmed by reporter gene assays. These data suggest a potentially important role for EU358092 in the aetiology of schizophrenia, either individually or in combination with other genes at this locus

    NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly-diagnosed epilepsy

    Get PDF
    Cognitive dysfunction is a common comorbidity in people with epilepsy, but its causes remain unclear. It may be related to the etiology of the disorder, the consequences of seizures, or the effects of antiepileptic drug treatment. Genetics may also play a contributory role. We investigated the influence of variants in the genes encoding neuron-restrictive silencer factor (NRSF) and brain-derived neurotrophic factor (BDNF), proteins previously associated with cognition and epilepsy, on cognitive function in people with newly diagnosed epilepsy. A total of 82 patients who had previously undergone detailed neuropsychological assessment were genotyped for single nucleotide polymorphisms (SNPs) across the NRSF and BDNF genes. Putatively functional SNPs were included in a genetic association analysis with specific cognitive domains, including memory, psychomotor speed, and information processing. Cross-sectional and longitudinal designs were used to explore genetic influences on baseline cognition at diagnosis and change from baseline over the first year since diagnosis, respectively. We found a statistically significant association between genotypic variation and memory function at both baseline (NRSF: rs1105434, rs2227902 and BDNF: rs1491850, rs2030324, rs11030094) and in our longitudinal analysis (NRSF: rs2227902 and BDNF: rs12273363). Psychomotor speed was also associated with genotype (NRSF rs3796529) in the longitudinal assessment. In line with our previous work on general cognitive function in the healthy aging population, we observed an additive interaction between risk alleles for the NRSF rs2227902 (G) and BDNF rs6265 (A) polymorphisms which was again consistent with a significantly greater decline in delayed recall over the first year since diagnosis. These findings support a role for the NRSF–BDNF pathway in the modulation of cognitive function in patients with newly diagnosed epilepsy

    Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137

    Get PDF
    MIR137 has been identified as a candidate gene for schizophrenia from genome-wide association studies via association with an intronic single nucleotide polymorphism (SNP), rs1625579. The location of the SNP suggests one mechanism in which transcriptional or posttranscriptional regulation of miR-137 expression could underlie schizophrenia. We identified and validated a novel promoter of the MIR137 gene adjacent to miR-137 itself which can direct the expression of distinct mRNA isoforms encoding miR-137. Analysis of both endogenous gene expression and reporter gene assays determined that this internal promoter is regulated by repressor element-1 silencing transcription factor (REST), which has previously been associated with pathways linked to schizophrenia. Distinct isoforms of REST mediate differential expression at this locus, suggesting the relative levels of these isoforms are important for miR-137 expression profiles. The internal promoter contains a variable number tandem repeat (VNTR) domain adjacent to the pre-miR-137 sequence. The reporter gene activity directed by this promoter was modified by the genotype of the VNTR. Differential expression was also observed in response to cocaine, which is known to regulate the REST pathway in SH-SY5Y cells. Our data support the hypothesis that a "gene × environment" interaction could modify the level of miR-137 expression via this internal promoter and that the genotype of the VNTR could modulate transcriptional responses. We demonstrate that this promoter region is not in disequilibrium with rs1625579 and therefore would supply a distinct pathway to potentially alter miR-137 levels in response to environmental cues

    Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses

    Get PDF
    Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle

    Types of HPV integration.

    No full text
    <p>A. Circular HPV genome. B. Linear HPV genome. URR (upstream regulatory region), P<sub>E</sub> (early promoter), and pA<sub>E</sub> and pA<sub>L</sub> (early and late polyadenylation sites) are indicated. The light blue circles in the URR represent E2 binding sites, and the dark blue square is the E1 binding site in the origin of replication (ori). C. In Type 1 integration, a single viral genome is integrated into the host DNA. In Type 2 integration, multiple genomes are integrated in tandem in a head-to-tail orientation. This often is accompanied by focal rearrangement and amplification of flanking cellular sequences.</p

    Integration events that promote oncogenesis.

    No full text
    <p>Integration events that promote oncogenesis.</p
    corecore