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Abstract 

Deciphering the complex molecular circuitry of the brain is crucial for 

understanding how processes such as higher cognitive function and behaviour 

are disrupted in neurological disease. Thus it is imperative to explore further 

the regulatory mechanisms centred on key transcription factors that 

orchestrate such processes including REST/NRSF (restrictive element-1 

silencing transcription factor/neuron restrictive silencing factor); NRSF targets 

over 2,000 human genes and plays a central and dynamic role in a myriad of 

CNS processes. To address the function of NRSF, I employed several research 

disciplines including bioinformatics, gene association studies for complex 

polygenic diseases and model systems for understanding the structure and 

function of several NRSF directed pathways in the CNS. My data demonstrated 

that disruption of the normal balance of NRSF within the cell may be a 

fundamental mechanism across a range of common neuropathologies. These 

included 1) schizophrenia, where NRSF was shown to be capable of directing 

allele-specific and stimulus-driven expression of MIR137 through identification 

of a novel promoter in this key schizophrenia genome wide associated gene; 2) 

cognitive dysfunction, polymorphisms within NRSF and its gene target BDNF 

influenced memory performance in patients with newly diagnosed epilepsy; 3) 

mood disorders, NRSF-signalling was identified as a significant pathway 

regulating cellular processes relevant to mood modification by pharmaceutical 

challenge and 4) NRSF-mediated regulation of microRNA-137 (miR-137) 

expression was demonstrated in vivo using a model of cortical spreading 
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depression, consistent with its involvement in associated neuropathologies 

including epilepsy and ischemia. The analysis was expanded to a common non-

neurological disease, breast cancer, where the previous work of others was 

extended to demonstrate a link between NRSF and miR-137 through the novel 

promoter identified in this study. Collectively these findings emphasise NRSF as 

a major contributor to cell pathogenesis, in part by modulation of miR-137, not 

only in a neuronal context but also in other systems.  
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General Introduction 
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1.1 Overview 

A transcriptional regulator that has been extensively studied for its role 

in modulating neuron-specific gene expression is repressor element-1 silencing 

transcription factor (REST) (Chong et al., 1995), also termed neuron restrictive 

silencing factor (NRSF) (Schoenherr and Anderson, 1995). NRSF signalling has 

been implicated in a number of neurological disorders including age-related 

cognitive dysfunction, epilepsy, schizophrenia and Huntington’s disease; 

however the exact role of NRSF in these pathological conditions and the 

associated regulatory mechanisms involved remain uncertain. To better 

understand the dynamic role of NRSF in disease processing, the purpose of this 

thesis was to dissect the pathways centred on NRSF regulation of key target 

genes important for CNS function, including BDNF (brain-derived neurotrophic 

factor) and microRNA-137 (miR-137). BDNF is a well characterised 

neurotrophin essential for neurodevelopment, synaptic plasticity and adult 

neurogenesis whose dysregulation has been associated with several CNS 

disorders including epilepsy, schizophrenia and cognitive decline both in 

disease and in normal ageing; the latter of which has previously been addressed 

in our group through genetic association (Miyajima et al., 2008b). miR-137 is 

also essential for neuronal development and function (Crowley et al., 2015), and 

is an important post-transcriptional regulator of genes implicated in several 

cancers and more recently schizophrenia through genome wide association 

studies (GWAS) (The Schizophrenia Psychiatric GWAS Consortium, 2011, Ripke 

et al., 2013). The main focus of this study was to 1) investigate the role of NRSF 

and its alternative isoform sNRSF, whose expression has been identified as a 

marker of disease states in both tumourgenesis and epilepsy (Coulson et al., 
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2000, Spencer et al., 2006, Wagoner et al., 2010), in modulating gene expression 

under normal physiological conditions and in response to cellular challenge (in 

vitro drug exposure) as a model of neurological dysfunction and 2) address 

genetic variation within the NRSF signalling pathway as clinical correlates for 

neurological disease and/or modulators of transcription that could underpin a 

disease-associated pathway. 

In Chapter 3, genotype analysis of single nucleotide polymorphisms 

(SNPs) within the NRSF and BDNF genes in patients with newly-diagnosed 

epilepsy was explored to determine genetic influences on cognitive dysfunction; 

a common co-morbidity in people with epilepsy. Both NRSF and BDNF have 

been implicated in rodent models of epilepsy (Palm et al., 1998, Calderone et al., 

2003, Spencer et al., 2006, Hu et al., 2011b, Quinn et al., 2002, Roopra et al., 

2001, Garriga-Canut et al., 2006, Liu et al., 2012b, Ballarín et al., 1991, Nibuya et 

al., 1995) and human studies of cognitive function (Voineskos et al., 2011, 

Honea et al., 2013, Miyajima et al., 2008a), including work by our group that 

showed an additive interaction between these two genes in determining 

cognitive performance in the elderly (Miyajima et al., 2008b), suggesting a 

potential role for these factors in epilepsy-associated cognitive impairments. A 

cross-sectional and longitudinal study design was employed to assess genetic 

effects on cognitive performance measured using a psychological battery test at 

both baseline, when individuals were initially recruited into the study and were 

naïve to anti-epileptic drug (AED) treatment; a factor reported to effect 

cognition (Taylor et al., 2010), and at 12-month reassessment following 

admission onto a treatment regime with AEDs. Several non-coding SNPs within 
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NRSF and BDNF were identified as being significantly associated with memory 

performance suggesting a regulatory role.  

The regulatory potential of NRSF over the human BDNF gene locus was 

also addressed in Chapter 3. The BDNF gene is extremely complex, giving rise to 

more than 34 different mRNA transcripts through alternative splicing that are 

expressed in a tissue-specific and stimulus-inducible manner within the CNS 

and periphery (Aid et al., 2007, Pruunsild et al., 2007, Baj and Tongiorgi, 2009). 

Expression of BDNF from its distinct promoters is induced by a variety of 

stimuli including electrical, chemical, hormonal, steroidal and inflammatory 

(Koibuchi et al., 1999, Toran-Allerand, 1996, Reichardt, 2006). Although many 

transcriptional pathways have been identified as being important for regulation 

of BDNF expression, the exact regulatory mechanisms are yet to be fully 

elucidated. NRSF has been shown to modulate distinct BDNF promoters in the 

rodent brain and in cell line models (Palm et al., 1998, Timmusk et al., 1999, 

Tabuchi et al., 2002b, Tabuchi et al., 1999, Abuhatzira et al., 2007); however, to 

my knowledge, NRSF-mediated regulation of human BDNF promoter utilisation 

has not been previously addressed. We therefore interrogated NRSF-mediated 

regulation of the BDNF gene locus in human-derived SH-SY5Y neuroblastoma 

cells using chromatin immunoprecipitation (ChIP) and correlated this with 

BDNF mRNA expression under basal conditions and following cocaine 

treatment; a known modulator of NRSF and BDNF expression in rodent models 

of cocaine-induced plasticity (Chandrasekar and Dreyer, 2009, Sadri-Vakili et 

al., 2010, Le Foll et al., 2005, Liu et al., 2006, Graham et al., 2007, Kumar et al., 

2005).  
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Following on from this, NRSF regulation of the MIR137 gene was 

addressed. MIR137 is a novel target identified as being the most significantly 

correlated locus associated with schizophrenia from GWAS (The Schizophrenia 

Psychiatric GWAS Consortium, 2011, Ripke et al., 2013). The intronic location of 

the associated MIR137 SNPs suggests one mechanism in which transcriptional 

or post-transcriptional regulation of miR-137 expression could underlie 

schizophrenia. The genomic architecture surrounding miR-137, such as active 

histone marks, RNA polymerase II (Pol II) binding and an overlapping CpG 

island, identified from in silico analysis suggested the presence of an internal 

promoter in the region. Bioinformatic analysis of the locus using the UCSC 

Genome Browser (accessed January 2012; http://genome.ucsc.edu/) identified 

NRSF as the only other transcription factor in addition to RNA Pol II required 

for miRNA transcription binding over this putative internal promoter (see 

Figure 4.1). A variable number tandem repeat (VNTR) domain adjacent to the 

precursor sequence of miR-137 was also located within this potential 

regulatory domain which contained a conserved NRSF binding site identified 

using the TRANSFAC (transcription factor) database; a resource containing data 

on transcription factors, their computationally-predicted and experimentally-

validated binding sites and regulated target genes (Matys, 2003). We 

hypothesised that NRSF and the MIR137 VNTR may act individually or in 

combination to modulate the expression and function of miR-137 in 

schizophrenia and further that genotypic variation at the VNTR might be 

associated with schizophrenia by modulation of gene expression levels. We 

validated and addressed the function of this novel promoter using an in vitro 

http://genome.ucsc.edu/�
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model system and genotyped the MIR137 VNTR in a schizophrenia cohort and 

compared it to that of a matched control group. 

To further investigate the regulatory mechanisms and pathways that 

might coordinate the cell response to a specific drug, in Chapter 5 we addressed 

the affects of mood modifying drugs, which are commonly used therapeutically 

or recreationally, on the transcriptome, in a tissue culture model, using qPCR 

arrays of mood disorder genes. Enrichment analysis of transcriptional networks 

relating to this gene set using pathway analysis tools identified NRSF as an 

important regulatory mechanism, highlighting a role for this transcriptional 

pathway, synergistically or separately, in the modulation of specific neuronal 

gene networks in response to mood modifying drugs.  

In the final chapter we attempted to extend our NRSF-MIR137 network, 

which we hypothesise to be one regulatory mechanism that may be modified in 

disease processes relevant to neurological dysfunction, to both animal models 

and disease mechanisms outside of the CNS. Specifically we explored the NRSF-

MIR137 pathway using a rodent model of cortical spreading depression (CSD) 

to assess both the evolutionary conservation of this neuronal network and, 

based on the assumption that it is conserved, make comparisons on the 

modulation of this pathway across different species in response to CNS insults. 

A human cell line model of breast cancer was also addressed as this cancer type 

has been identified from the literature to involve these two regulatory factors 

(Wagoner et al., 2010, Zhao et al., 2012) and was also identified as a significant 

disease ontology pathway from analysis of transcriptional networks centred on 

NRSF signalling (see Chapter 5). 
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1.2 Understanding CNS disorders 

Disorders of the CNS are conditions which affect either the brain or 

spinal cord resulting in neurological or psychiatric illness. There are more than 

1,000 disorders of the CNS ranging from functional disorders, such as epilepsy 

and migraine; degenerative disorders, such as Alzheimer's and Parkinson's 

disease and psychiatric disorders, such as mood disorders and schizophrenia. 

These neurological conditions are extremely debilitating and are a major cause 

of morbidity and mortality in both males and females worldwide, with an 

estimated 1/3 of the adult population suffering from a mental disorder (Kessler 

et al., 2009). CNS pathologies account for approximately 13% of the global 

disease burden in high income countries, resulting in more hospitalisations and 

loss in productivity than any other disease group (Collins et al., 2011). Despite 

such high prevalence existing treatments for a large number of neurological 

conditions remain inadequate, in part owing to the complex and heterogeneous 

nature of this disease group. Understanding the regulatory mechanisms 

underlying neuropathologies will allow for better classification and diagnosis of 

such conditions, drug target identification through direct biochemical methods, 

genetic interactions or computational inference and development of more 

appropriate pharmaceutical and/or therapeutic interventions.     

Many common diseases and traits are multifactorial in nature and are 

influenced by both genetic and environmental factors, including chemical, 

physiological, sociocultural and psychological. In terms of mental health, 

extensive interaction between an individual’s genetic makeup and their genetic 

response to environmental stimuli will influence not only their immediate 

behaviour but could also leave an epigenetic mark of the event that might 
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manifest in later years as a psychiatric phenotype. Genetic response in this 

context refers to the influence of genetic variation on the transcriptional 

machinery in driving differential gene expression following exposure to an 

environmental pathogen. The clinical presentations of neuropathologies vary 

immensely between individuals; supporting such a notion of gene-environment 

interaction (GxE). The multifactorial and polygenic nature of neuropathologies 

poses a tremendous challenge in teasing out the underlying processes involved. 

However, recurring themes in the genetic vulnerability, high heritability rates 

and neuropsychological dysfunction in common cognitive domains associated 

with different neurological conditions, such as bipolar disorder and 

schizophrenia, suggests that common regulatory networks that are both 

essential and ubiquitous to neural functioning may be important in defining 

such diseases (Lipton and Rosenberg, 1994, Fuller Torrey, 1999, Fatemi et al., 

2000, Fatemi et al., 2001a, Fatemi et al., 2001b, Torrey et al., 2005, Ahmed et al., 

2011, Morris et al., 2012, Cross-Disorder Group of the Psychiatric Genomics, 

2013a, Network and Pathway Analysis Subgroup of the Psychiatric Genomics 

Consortium, 2015). With this in mind we sought to address the regulatory 

mechanisms centred on NRSF, a factor originally defined as a ‘master regulator’ 

of neuronal gene expression and whose dysregulation is implicated in multiple 

disorders of the CNS in order to define potentially important transcriptional 

networks underlying or modulating common neurological pathologies.       
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1.3 Regions of the brain important in mental health 

Our conscious awareness of self and emotional state of mind in response 

to our environment reflects the elaborate neuronal circuitry of the cerebral 

cortex. Appropriate responses to environmental stimuli involve integration and 

processing of sensory input through dynamic interaction of the cortex with the 

thalamus, cerebellum and subcortical regions, such as the limbic system and 

basal ganglia. Interaction between prefrontal neocortical regions, which are 

implicated in moderating higher-order cognitive functions such as mood, 

conscious perception of emotional experiences and social behaviour, along with 

the amygdala and hippocampus forms the prefrontal-limbic network (PLN). The 

central nucleus of the amygdala is believed to be the principle excitatory hub in 

response to emotional stimuli (Sotres-Bayon et al., 2004). It receives input from 

the lateral nucleus of the amygdala, either directly or via intra-amygdala 

circuitries, and sends out projections to various cortical and subcortical regions. 

The principle inhibitory pathways of this circuitry are the medial prefrontal 

cortex (mPFC) (Rosenkranz et al., 2003, Phelps et al., 2004, Izquierdo et al., 

2005, Urry et al., 2006, Johnstone et al., 2007) and the hippocampal formation 

(Corcoran and Maren, 2001, Sotres-Bayon et al., 2004); regions important in the 

regulation and fine-tuning of attention, cognitive control and emotional 

responses (Bush et al., 2000). The encoding and storage of emotional memories 

is dependent, in part, upon the amygdala, hippocampus and their reciprocal 

interactions. The hippocampal formation is the primary system for declarative 

memory (Squire and Zola-Morgan, 1991). Following emotional arousal, it can 

generate episodic representations of the event which can influence the role of 

the amygdala in the perception and processing of such stimuli (Richardson et 
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al., 2004). Some of the major anatomical structures of the brain important in 

mental health are shown in Figure 1.1 and their functions summarised in 

Table 1.1. 

Signal transduction following stimulus-induced activation of neuronal 

networks relies on extensive cross-talk between a vast number of regulatory 

mechanisms, including cellular depolarisation, neurotransmitter systems and 

neurotrophic signalling pathways, which modulate downstream signalling 

cascades leading to transcriptional responses. Disruption of these connections 

is apparent in several neuropsychiatric disorders including major depressive 

disorders (Johnstone et al., 2007, Bennett, 2011), bipolar disorder (Green et al., 

2007, Chen et al., 2011a, Morris et al., 2012) and schizophrenia (Morris et al., 

2012, Radulescu and Mujica-Parodi, 2009, Sigmundsson et al., 2001, Williams et 

al., 2004) and may in part reflect genetic perturbations. This is suggested from 

analysis of structural variations of white matter in the cerebral hemispheres of 

control subjects, schizophrenia patients and their relatives which have been 

shown to vary in accordance with relatedness to a patient (Phillips et al., 2011). 

Neuroimaging studies of schizophrenia provide considerable evidence of diffuse 

structural defects in several brain regions, primarily the association cortex of 

the frontal, temporal and limbic regions (Zipursky et al., 1992, Harvey et al., 

1993, Sigmundsson et al., 2001, Dickey et al., 2007); subcortical regions such as 

the basal ganglia (Lim et al., 1996, Perez-Costas et al., 2010) and the axonal 

trajectories between them (Andreasen et al., 1994, Andreasen, 1999, 

Sigmundsson et al., 2001, Radulescu and Mujica-Parodi, 2009, Morris et al., 

2012). This may be reflective of the heterogeneous nature of the syndromes 

making up this condition and suggests that underlying dysfunction of several 
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key neural processing systems central to emotional responses (Williams et al., 

2004), neuroendocrine function (Ritsner et al., 2004, Goldman et al., 2011) and 

behavioural and autonomic control (Dawson et al., 1994, Mujica-Parodi et al., 

2005) may be important in disease aetiology. Dissecting the transcriptional 

mechanisms mediating disease-associated phenotypic presentations to 

environmental cues and addressing the potential regulatory impact of genetic 

variants embedded within these processing systems will allow for better 

understanding of the underlying pathways involved in schizophrenia. 

Throughout this thesis we explore the regulatory potential of common genetic 

variants within non-coding regions of the genome through several mediums 

including in silico predictions of regulatory function, genetic association and 

reporter gene assays, in order to investigate the effects of genetic variation on 

transcriptional responses which may underpin a pathway modulating 

neurological disease or pathological traits.     
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Figure 1.1. Areas of the brain important in mental health. Interaction between prefrontal 

neocortical regions (ACC, PFC, OFC, vmPFC) with the amygdala, thalamic nuclei and 

hippocampus forms the prefrontal-limbic network (PLN). Dynamic modulation of the PLN 

through interaction with the hypothalamic, basal ganglia and brainstem effector systems is 

important for eliciting appropriate behavioural, peripheral autonomic, endocrine and 

somatomotor responses to emotional stimuli. Highlighted regions represent key areas involved 

in social functioning, a factor which is closely related to mental health as demonstrated by 

frequent social deficits of neuropsychiatric patients and increased rates of psychiatric 

conditions in people exposed to social environmental adversity. Figure adapted from aan het 

Rot et al. (2009). ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; PFC; prefrontal cortex; 

vmPFC, ventromedial prefrontal cortex. 

Social categorisation processes

Emotional and motivational appraisal of social stimuli
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Table 1.1. Areas of the brain important in mental health 

Region Function Examples of dysfunction in 
neurological disease 

BASAL GANGLIA: 

 Corpus striatum 
 Substantia nigra 
 Subthalamic nucleus 
 Ventral tegmental area 

Involved in movement, emotions and integration of sensory information. 
Connections to the limbic system via the corpus striatum and VTA play a key role 
in motivation. The reward circuit, which includes the NAc of the VS, OFC, ACC, 
amygdala and dopaminergic projections from the midbrain (VTA), is also 
embedded within this system and is a key driving force for associated behaviours 
e.g. anticipation and value.  

HD; degeneration of striatal neurons 

PD; loss of dopaminergic neurons in 
the substantia nigra 

SCZ; positive symptoms linked to 
excess dopamine transmission in the 
striatum (nigrostriatal pathway)  

LIMBIC SYSTEM: 

 Neocortex (ACC, OFC and 
vmPFC) 

Mediates conscious perception of emotional experiences/feelings such as fear, 
anger, pleasure and satisfaction through interactions with subcortical centres, in 
particular the amygdala. Plays a central role in encoding goal-directed behaviours, 
emotional decision making, social categorisation, motivation and reward.   

SCZ; Structural abnormalities in 
frontal, temporal and limbic regions 
and interconnecting white matter 
tracts reported in patients with 
prominent negative symptoms. 
Linked to reduced dopamine 
transmission along the mesocortical, 
mesolimbic and tuberoinfundibular 
pathways. Disturbances in cortico-
cortical glutamatergic pathways 
(between cortex and thalamus) 
linked to psychosis, cognitive deficits 
and emotional processing.  

 

 Amygdala Essential for sensing and evaluating the affective significance of incoming stimuli 
and activating the appropriate responses for its three principal functional roles:  

1. Behaviour for preservation of self (fight or flight response) 
2. Learning through association and co-ordination of diverse sensory inputs to 

generate new behavioural and autonomic responses (e.g. classical 
conditioned emotional responses)  

3. Emotional processing; Connections with hypothalamic and brainstem effector 
systems mediate peripheral autonomic, endocrine and somatomotor 
responses to stimuli which evoke an emotional response. 

 Hippocampal formation 
(hippocampus proper, dentate 
gyrus and subiculum)  

Pre-commissural fibres connect with the neocortex, pre-optic nuclei and VS. Post-
commissural fibres connect to the anterior nucleus of the thalamus and 
hypothalamic nuclei, including the mammillary bodies. Inputs from the cingulate, 
temporal, orbital, and olfactory cortices and amygdala communicated to the 
hippocampus. Also receives monoaminergic input from the brainstem nuclei: 

AD; neurofibrillary tangles and 
neuritic plaques appear initially in 
pyramidal cells of the entorhinal 
cortex and spread to the temporal 
pole and PFC. 
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Note: ACC, anterior cingulate cortex; AD, Alzheimer’s disease; ANS, autonomic nervous system; HD, Huntington’s disease; MDD, major depressive disorder; NAc, 

nucleus accumbens; OFC, orbitofrontal cortex; PD, Parkinson’s disease; PFC; prefrontal cortex; SCZ, schizophrenia; vmPFC, ventromedial prefrontal cortex; VS, 

ventral striatum; VTA; ventral tegmental area. 

raphe nuclei (serotonin), the locus coeruleus (noradrenaline) and the VTA 
(dopamine). Important for declarative memory, spatial navigation, control of 
attention and emotions and controlling corticosteroid production. 

 Hypothalamus Mediates ANS (visceral) responses that accompany the expression of emotions in 
response to projections from the limbic system.  

MDD; structural brain changes in 
patients with major depressive 
disorder have been attributed to 
abnormal function of the 
hypothalamic–pituitary–adrenal 
axis. 

 Thalamus:  
Anterior nuclear group of the 
Thalamus 

The ‘limbic nuclei’ of the thalamus, mainly the anterior nuclear group receive 
input from the amygdala and hypothalamus and in turn project to the limbic lobe 
cortex, in particular the cingulate gyrus. These nuclei are thought to be involved in 
visceral emotions, the visceral aspects of behaviour and learning and memory.  
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1.4 The effects of mood modifying drugs on the brain 

Neuronal plasticity in the brain is necessary for learning and memory 

and allows us to respond to environmental changes. Extended periods of stress 

can result in alterations in excitatory circuitries associated with affective 

disorders such as anxiety and depression which can be alleviated by 

pharmaceutical intervention. Drugs which affect mood can therefore be used to 

investigate the neural circuitries important in regulating mental health through 

identifying changes in gene expression associated with a particular drug 

pathway and therefore implicated in treatment responses or off-target/adverse 

effects. Tissue culture models allow for transcriptome profiling of cellular 

responses to drug challenge, offering both a human-derived and cell-specific 

system for defining drug pathways, modes of action and neuronal plasticity 

within the brain. Mood modifying drugs may have a single mode of action or 

exert their effects through multiple mechanisms in a concentration dependent 

manner. Principle mechanisms of drug action include modulation of 

intracellular signalling pathways and neurotransmission; targeting voltage-

gated ion channels, 7-transmembrane G-protein coupled receptors or 

neurotransmitter metabolic enzymes, which ultimately lead to the modulation 

of transcription factors controlling the expression of genes encoding growth 

factors, neurotrophic factors, ion channels and other proteins involved in 

neuronal function. In vitro assessment of the transcriptional responses of key 

mood disorder genes following exposure to the mood stabilisers lithium and 

sodium valproate and the psychostimulants amphetamine and cocaine are 

investigated in Chapter 5 of this thesis as a means of assessing pathways 

implicated in neuronal and behavioural plasticity. 
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1.4.1 Mood stabilisers 

Mood stabilisers are drugs that are used in the clinical treatment of 

manic-depressive disorders. Lithium and sodium valproate are two widely used 

mood stabilising drugs; lithium is a simple monovalent cation used as the first 

choice drug for the treatment of bipolar disorder, whereas valproate is a simple 

branched-chain fatty acid (2-propylpentanoic acid) used in the treatment of 

epilepsy and acute mania. Both drugs are used in augmentation therapy for 

depression and in preventative treatment of manic-depression (Fountoulakis et 

al., 2005), and share overlapping mechanisms of action involving the 

integration of second-messenger systems and neurotransmitter pathways 

which are thought to be central to their stabilising and neuroprotective effects. 

The exact mechanism of action remains unclear for both lithium and valproate; 

however their modulation of protein kinase signalling cascades and 

downstream effects on the expression of transcriptional regulators and genes 

important in synaptic plasticity and neurogenesis are well documented.  

One of the earlier theories on lithium’s therapeutic mode of action relate 

to its inhibitory affect over the phosphoinositide pathway termed the 'inositol 

depletion hypothesis' (Berridge et al., 1989), which postulates that lithium 

exerts its therapeutic effect through cell-specific depletion of myo-inositol 

leading to subsequent alterations in the activity of downstream inositol 

phosphates, protein kinase C (PKC) signalling and modulation of signal 

transduction cascades important in neural plasticity. Dysregulation of PKC 

distribution and activation, and abnormal receptor-G protein coupling have 

been implicated in the pathophysiology of bipolar disorder, with lithium 

treatment alleviating such impairments (Lenox, 1987, Manji and Lenox, 1994, 
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Manji et al., 1993, Friedman et al., Lenox and Wang, 2003, Hahn et al., 2005). 

Other molecular targets inhibited by the action of lithium include glycogen 

synthase kinase-3β (GSK3β) and adenylate cyclise (AC). Lithium-induced 

inhibition of GSK3β, an essential component of the canonical Wnt/β-catonin 

signalling pathway, has been shown to stabilise  β-catonin which mediates Wnt-

dependent transcriptional activation of genes involved in neurogenesis and 

neuroprotection against several cellular stressors including glutamate 

excitotoxicity and β-amyloid toxicity (Forde and Dale, 2007, Chuang et al., 2002, 

Chuang et al., 2011, Wan et al., 2014, Marchetti et al., 2013). The effect of 

lithium on the AC second-messenger system results in stabilisation of cyclic 

AMP (cAMP) through modulation of different AC subtypes dependent upon the 

state of neural activation (Dousa and Hechter, 1970, Newman and Belmaker, 

1987, Mann et al., 2008, Mann et al., 2009). The bimodal affect of lithium on 

cellular levels of cAMP have been proposed as one mechanism through which 

this mood stabiliser can be used in the treatment of both mania and depression 

(Jope, 1999). It has been proposed that the inhibitory effect of lithium on 

several cellular transduction pathways is the result of Li+/Mg2+ competition for 

sites on biomolecules involved in second-messenger systems due to their 

similar physicochemical properties (Mork and Geisler, 1987, Ramasamy and de 

Freitas, 1989, Mota de Freitas et al., 1994, Amari et al., 1999). In addition, 

lithium has also been shown to inhibit voltage-dependent sodium channels 

independent of the effects of GSK3β (Yanagita et al., 2007). NRSF is a regulator 

of voltage-gated sodium channel transcription and signalling and has been 

shown to be modulated in response to lithium treatment in mouse neural stem 

cells (Mori et al., 1992, Chong et al., 1995, Ishii et al., 2008, Nadeau and Lester, 
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2002), suggesting lithium-induced modulation of neuronal gene expression 

along the NRSF-signalling pathway. 

Lithium has also been shown to modulate neurotransmission, in part 

through mechanisms involving second-messenger signalling, reducing 

excitatory dopaminergic and glutamatergic pathways (Dunigan and Shamoo, 

1995, Fonseca et al., 2009) and increasing serotonergic and GABAergic 

pathways (Scheuch et al., 2010, Malhi et al., 2013). In addition, lithium induces 

the up-regulation and secretion of cortical BDNF and activation of its receptor 

TrkB (tropomyosin-related kinase-B) (Hashimoto et al., 2002), which correlated 

with inhibition of GSK3β and is thought to be perquisite for lithium’s 

neuroprotective effects (Chuang et al., 2011). Binding of BDNF to its receptor 

activates the ERK (extracellular signal-regulated kinase), PI3K 

(phosphoinositide 3-kinase) and PLC (phospholipase C) signalling pathways, 

mediating a range of cellular processes important for neuronal survival, 

differentiation, synaptic transmission and long-term potentiation (Blum and 

Konnerth, 2005). Independent studies have also shown lithium-induced 

activation of the ERK-signalling pathway and downstream modulation of 

transcriptional regulators important in neuronal function such as AP-1 

(activator protein-1), CREB (cAMP response element-binding protein) and 

NRSF (Ozaki and Chuang, 2002, Einat et al., 2003, Ishii et al., 2008) which are 

important modulators of the BDNF-signalling pathway. Other NRSF target 

genes, including TAC1 which encodes for substance P, have also been shown to 

be modulated in response to lithium (Haddley et al., 2011). 

Sodium valproate is a histone deacetylase (HDAC) inhibitor used as a 

broad spectrum drug in the treatment of a wide range of seizure types and 
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epilepsy syndromes (Kwan et al., 2001).  The exact mechanisms of action for the 

anticonvulsant properties of valproate are yet to be fully elucidated and are 

attributed to its inhibition of voltage-gated sodium channels and increased 

activation of GABAergic neurotransmission (Johannessen, 2000). In its role as a 

mood stabiliser, valproate has been shown to have several overlapping 

mechanisms of action with lithium, including depletion of inositol, activation of 

ERK-signalling, reduced PKC activation, increased expression of BDNF and 

modulation of transcription factors AP-1 and CREB (Rouaux et al., 2007, Chen et 

al., 1999, Hahn et al., 2005, Einat et al., 2003, Fukumoto et al., 2001, Shaltiel et 

al., 2004). Valproate has also been shown to activate Wnt-dependent gene 

expression however, distinct from the action of lithium, this involves inhibition 

of HDACs as opposed to GSK3β (Phiel et al., 2001). Several studies have also 

demonstrated valproate-induced inhibition of GSK3β, however this may reflect 

its role in modulating epigenetic parameters (Rosenberg, 2007).  

 

1.4.2 Psychostimulants 

Psychostimulants such as cocaine and amphetamine have been used to 

mimic human psychosis in animal models of schizophrenia (Pihlgren and 

Boutros, 2007). This is largely based on the pharmacological actions of these 

drugs on the dopaminergic pathway resulting in extracellular increases in 

dopamine within mesostriatal and mesolimbic areas of the brain (Giros et al., 

1996), a mechanism comparable to the ‘dopamine hypothesis’ of schizophrenia 

which postulates that the underlying disease aetiology reflects perturbations in 

the prefrontal cortex resulting in exaggerated dopamine release in subcortical 

regions (Howes and Kapur, 2009). Mesocortical and mesolimbic dopaminergic 
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projections from the ventral tegmental area (VTA) of the midbrain innervate 

several structures within the limbic lobe (such as the amygdala and nucleus 

accumbens) and mPFC which are areas implicated in cognition, reward and 

locomotion (Oades and Halliday, 1987). High doses of these drugs can result in 

transient stimulus-induced psychotic episodes which reflect the positive 

symptoms of schizophrenia, including delusions, hallucinations and paranoia, in 

individuals free of neuropsychiatric diathesis and also provoke or exasperate 

such symptoms in schizophrenic individuals at much lower drug thresholds 

than in non-schizophrenics (Lieberman et al., 1990, Serper et al., 1999). In 

addition, acute and chronic cocaine abuse has also been associated with 

negative symptoms of schizophrenia such as social withdrawal and also 

affective symptoms such as anxiety and depression both in schizophrenic and 

non-schizophrenic individuals (Serper et al., 1999) which may reflect its 

modulation of several neurotransmitter pathways including the monoamines 

(dopamine, noradrenaline and serotonin) and glutamatergic synaptic 

transmission (Serper et al., 1999, Fernandez-Castillo et al., 2012). Cocaine is a 

lipophilic alkaloid that mainly exerts its psychomotor effects through blockade 

of the dopamine transporter (DAT) (Ritz et al., 1987, Horn, 1990), a protein 

which functions to modulate the spatiotemporal activity of dopamine through 

rapid reuptake of this neurotransmitter into the pre-synaptic terminals of 

dopaminergic neurons for recycling or degradation by monoamine oxidase 

(Meiser et al., 2013). In contrast to cocaine, amphetamine results in increased 

extracellular dopamine levels through stimulating its release from pre-synaptic 

nerve terminals as opposed to inhibiting its reuptake. Amphetamine belongs to 

the class of drugs called the β-phenylethylamines and shares a similar chemical 
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structure to that of noradrenaline and dopamine. Consistent with this, 

amphetamine has been shown to non-selectively release monoamines from rat 

brain tissues slices and synaptomosomes (Heal et al., 2013).  

Recent evidence suggests that the medium- to long-term changes in 

neuroplasticity in response to psychostimulants, a mechanism implicated in 

models of addiction, reflects alterations in glutamatergic neurotransmission 

within the VTA to the amygdala, PFC and nucleus accumbens (Kalivas, 2004). In 

support of this, a study in rat midbrain slices showed that acute cocaine 

resulted in a delayed increased N-methyl-D-aspartate (NMDA) glutamate 

receptor activation in the VTA via a D5 receptor-dependent pathway involving 

cAMP/PKA (protein kinase A) signalling (Schilstrom et al., 2006). Acute cocaine 

and amphetamine administration in mice also results in reduced 

phosphorylation of GSK3β in the ventral striatum and cerebral cortex, resulting 

in its increased activation which is dependent upon both dopaminergic and 

glutamatergic receptor signalling in terms of cocaine (Miller et al., 2014, Mines 

and Jope, 2012). This is in contrast to the role of the mood stabilisers lithium 

and valproate that inhibited GSK3β activity. The overlapping pathways targeted 

by these mood modifying drugs suggests that common neuronal networks may 

be involved in the stabilisation of mood and that modulation of these may be 

important mechanisms in the development of adverse behaviours to drugs of 

abuse such as addiction. Throughout this thesis we use cocaine as our cellular 

challenge of choice as it is a robust model for studying stimulus-induced 

activation of pathways linked to mood, psychosis, cognition and cellular stress 

(Vasiliou et al., 2012, Pihlgren and Boutros, 2007, Spronk et al., 2013). It is also 

well documented that several NRSF target genes including BDNF (Le Foll et al., 
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2005, Liu et al., 2006), which is addressed in Chapter 3, are modulated by 

cocaine and that miRNA-mediated pathways (see Chapter 4 for modulation of 

miR-137 in response to cocaine) may be important regulators of such cocaine-

induced plasticity genes (Chandrasekar and Dreyer, 2009). Furthermore, NRSF 

has been implicated in both dopaminergic and glutamatergic signalling 

pathways through its targeting of dopamine-beta-hydroxylase and several 

glutamate receptor subunits (Roopra et al., 2001), suggesting a key role for this 

transcription factor in processes relevant to mood as discussed in Chapter 5.  

 

1.5 Polymorphic variation as a biomarker for CNS disease  

Recent advances in GWAS and next generation sequencing technologies 

have provided great insight into the genetic underpinnings of complex diseases, 

with many common (low risk), rare (moderate to high risk) and de novo 

disease-susceptibility variants being identified and replicated across several 

neuropsychiatric disorders. The focus has been largely based on the influence of 

SNPs involving substitution of one nucleotide base for another within the DNA 

sequence. Such studies utilise genotyping platforms to measure in the range of 1 

million common SNPs to identify risk loci that have significantly different 

genotype frequencies between individuals with a particular disease or 

pathological trait compared to the general population. Linkage disequilibrium 

(LD) analysis shows that associated SNPs can represent a large genetic region 

conferring risk due to the fact that SNPs in close proximity within the genome 

are inherited as a block. It is therefore a difficult challenge to identify which 

markers within a region of strong LD are biologically important for disease 

processing. Meta-analyses of GWAS have shown that approximately 88% of 
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trait/disease-associated SNPs are located within intronic or intergenic regions 

of the genome (Hindorff et al., 2009), with the majority of genome-wide risk loci 

identified from LD analysis also being non-coding (MacKenzie et al., 2013).  

Considerable efforts have been made to overlap GWAS data with cis- and 

trans-regulatory domains identified through the ENCODE (Encyclopaedia of 

DNA Elements) project, a resource which details functional elements within the 

genome including protein-coding and non-coding transcripts, DNase I–

hypersensitive sites, active histone marks and transcription factor binding sites 

(TFBS) (The ENCODE Project Consortium, 2011). A recent study which mapped 

chromatin marks in nine different cell lines showed a two-fold enrichment of 

GWAS SNPs within predicted enhancer regions (Ernst et al., 2011), suggesting 

that the biological significance of these polymorphisms reflects their impact on 

regulatory mechanisms. Figure 1.2 summarises the potential functional effects 

of polymorphisms dependent upon their location within the genome.  Despite 

their success, GWAS only account for a small portion of the heritability behind 

complex disorders (Manolio et al., 2009). This may reflect several factors 

including the contribution of SNPs not captured on commercial SNP-arrays, 

other common sources of genetic variation such as DNA tandem repeats and 

copy number variations, epistasis (gene-gene interactions), epigenetics and GxE 

interactions; all of which have been implicated in disease susceptibility and are 

thought to contribute towards the so called ‘missing heritability’ (Hannan, 2010, 

Breen et al., 2008, Kaminsky et al., 2009, Wei et al., 2011, Gray-McGuire et al., 

2000, Stefansson et al., 2009). DNA tandem repeats are frequent within the 

human genome accounting for an estimated 3% of the genomic sequence which 

is more than the sum of protein-coding sequence (~1%)  (International  Human  
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Figure 1.2. Locations of polymorphisms in the genome and their potential effects. 

Polymorphisms (e.g. single nucleotide polymorphisms, tandem repeat polymorphisms) are 

indicated by triangles and can be located in exons, introns or intergenic regions. They have the 

potential to modulate the levels of gene expression (e.g. through altering the composition of 

binding sites for transcription factors or epigenetic regulators), particularly when located in cis-

trans regulatory elements such as those found within promoter regions (cis) or acting from a 

distance within intergenic regions (trans). When located within coding sequences, 

polymorphisms can alter the structure and function of RNAs and proteins (e.g. codon repeats 

translated into amino acid runs as seen in trinucleotide repeat expansion disorders such as 

Huntington’s disease). Thus, a wide range of molecular processes can be disrupted at the DNA, 

RNA and protein levels due to the effects of genetic variations. Abbreviations: ncRNA, non-

coding RNA; ORF, open reading frame; UTR, untranslated region. Figure adapted from Hannan 

(2010).  
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Genome Sequencing Consortium, 2001). They include the microsatellites which 

have short motif lengths between 1-6 bp and minisatellites of longer motif 

lengths. Both microsatellites and minisatellites are frequently polymorphic in 

nature and are often termed VNTRs, however strictly speaking VNTRs 

represent only the minisatellites. Microsatellites and minisatellites are 

respectively thought to arise through DNA-replication slippage (transient 

dissociation of the replicating  DNA  strands followed by misalignment re-

association) and unequal-crossing-over or gene conversion events (non-

reciprocal exchange of genetic material among chromosomes) (King et al., 

1997). VNTRs have been shown to exhibit several functional properties, 

including transcriptional regulation (Haddley et al., 2008), alternative splicing 

(Lian and Garner, 2005), recombination (Harding et al., 1992) and disease 

processing (Bowater and Wells, 2001). The latter is best exemplified through 

the trinucleotide repeat expansion disorders, such as Huntington’s disease, in 

which the associated repeats show somatic and germline instability (Orr and 

Zoghbi, 2007). Genetic variation within the coding sequence of a gene which 

alters the primary sequence of a protein has allowed tremendous insight into 

the underlying mechanisms associated with predisposition, progression and 

severity of diseases. As with the case of Huntington’s disease, expansion of a 

translated CAG repeat containing more than 35 copies encodes for the mutant 

huntingtin (Htt) protein, with repeat length of the expanded allele inversely 

correlating with age of onset in a dominant fashion (Lee et al., 2012). VNTRs 

with non-coding sequences have also been identified as being mechanistically 

involved in disease processing, such as the Amyotrophic lateral sclerosis (ALS) 
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associated CCCCGG repeat expansion in the C9ORF72 gene (DeJesus-Hernandez 

et al., 2011).   

Variable repeats are enriched within functional regions of the genome, 

such as gene promoters and enhancers (Breen et al., 2008), and have been 

shown to contribute towards phenotypic traits such as behaviour. The well-

characterised human 5-HTTLPR (serotonin-transporter-linked polymorphic 

region) and STIN2 (second intron of the serotonin transporter) VNTRs within 

the 5-HTT gene locus are prime examples of copy number variants respectively 

found within promoter and enhancer sequences, identified as both clinical 

correlates for behavioural disorders and as allele-specific and stimulus-

inducible modulators of reporter gene expression (Haddley et al., 2008, Klenova 

et al., 2004, Roberts et al., 2007, Ali et al., 2010, Collier et al., 1996). The 

regulatory potential of such repetitive domains is not surprising considering 

their capacity for encoding numerous recognition sites within their sequence 

motifs which may bind factors that interact with DNA such as transcription 

factors, polymerase, splicing factors and microRNAs (miRNAs). In silico analysis 

predicts that VNTRs are more represented than SNPs for overlapping conserved 

TFBS and, on average, VNTRs encode for approximately two TFBS with many 

encoding for more (Breen et al., 2008). Therefore with increasing repeat length 

VNTRs may bind multiple copies of a transcription factor or influence the 

likelihood of keeping them bound to the DNA, supporting a role in the 

modulation of gene expression. Again, this can be demonstrated from our own 

studies on the 5-HTT VNTRs which display allele-specific and stimulus 

inducible binding of transcriptional regulators including CTCF (CCCTC-binding 

factor), MeCP2 (methyl-CpG–binding protein 2), YB-1 (Y box binding protein 1) 
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and HDACs in vitro (Vasiliou et al., 2012, Roberts et al., 2007, Ali et al., 2010, 

Klenova et al., 2004). Further, the highly polymorphic nature (suggestive of high 

mutation rates) and regulatory capacity of these two VNTRs supports the 

hypothesis that repeat variation is an evolutionary mechanism that allows for 

rapid adaptation of phenotypic traits in response to environmental changes 

through tandem repeat mutations (King et al., 1997, Fondon et al., 2008). In 

Chapter 4, a VNTR within the genome-wide associated schizophrenia candidate 

gene MIR137 is investigated as a clinical correlate for schizophrenia, as has 

been done previously with the 5-HTT variants. Both genetic association and 

functional analysis of allele-specific differences in transcriptional regulation 

over the region are explored to address potential GxE mechanisms operating at 

this repetitive domain which may uncover important disease pathways 

involved in neurological dysfunction. 

 

1.6 Gene-environment interactions in the CNS  

In addition to the role of genetic variation in predicting disease risk, 

epidemiological studies have also identified a number of important 

environmental pathogens (e.g. early life trauma, lifestyle, urban upbringing) 

and it is widely accepted that interplay between genes and environment is an 

important determinant in disease aetiology and may explain the ‘missing 

heritability’ of common disorders; that is the failure—so far—to uncover 

specific polymorphic variants that account for the substantial genetic influences 

on particular traits/disease phenotypes identified from twin and family studies. 

The synergistic effect of genotype and environmental exposure in the 

modulation of physical and psychological health is referred to as gene-
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environment interactions or GxE (Moffitt et al., 2005). The transcriptional 

machinery, which forms the genetic side of the GxE equation, has evolved to 

mediate the cellular responses to environmental challenge through induction, 

repression or modulation of neuronal gene expression. Superimposed on this, 

genetic polymorphisms within neuronal pathways can influence the GxE 

component through allele-specific differential regulation of gene expression and 

therefore have the potential to modify several processes implicated in 

behaviour. Polymorphisms can thus act as predisposing factors in the aetiology 

of neuropsychiatric disease by sensitising individuals to certain environmental 

stressors (Quinn et al., 2013, Hill et al., 2013). Environmental factors not only 

influence immediate transcriptional responses but can also potentiate medium 

to long-term affects through modulation of epigenetic parameters. Epigenetics 

refers to changes in gene expression or cellular phenotypes brought about by 

chemical modifications to the DNA and its associated histone proteins, 

independent of changes to the composition of the underlying nucleotide 

sequence. Such ‘accessorising’ of the genome is important in developmental 

processes such as the establishment of cellular identity and the hardwiring of 

neuronal circuitries within the brain. Epigenetic mechanisms are also important 

in the mature nervous system and are thought to play essential roles in 

modulating neuronal plasticity and lasting states of neuronal gene expression 

(Borrelli et al., 2008).  
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1.7 Epigenetics: Bridging the GxE response in neurological 

disease 

It is widely accepted that any approach to understanding the 

mechanisms of transcriptional regulation in eukaryotic cells has to take into 

account that nuclear DNA is condensed and packaged into nucleosomes, the 

repeating structural units of chromatin, by wrapping around a histone octomer 

core composed of the four canonical histone proteins H2A, H2B, H3 and H4 

(Luger et al., 1997). When a gene goes from an inactive to an actively 

transcribing state, chromatin remodelling is required to allow binding of the 

basal transcriptional machinery and other regulatory factors to the underlying 

naked DNA sequence, which is often inaccessible due to the presence of 

nucleosomes. During transcription, several chromatin remodelling mechanisms 

permit access to the underlying nucleasomal DNA including: unwrapping or 

lifting of the DNA from the surface of the histone octamer, partial or entire 

nucleosome ejection and translational repositioning (sliding) of the histone 

octamer along the DNA (Saha et al., 2006). In addition to nucleosome 

remodelling, histones acquire distinct epigenetic signatures, including 

acetylation of lysine side chains, methylation of lysines and/or arginines and 

phosphorylation of serines, which provide a molecular platform for readers of 

the histone code which mediate appropriate transcriptional responses. 

Simplistically, depending on the nature of its associated epigenetic marks, 

chromatin will adopt an open or closed conformation, mediated through the 

action of the transcriptional machinery, resulting in gene activation or 

repression respectively. Chromatin remodelling and histone modifications are 
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not mutually exclusive of each other, as it has been demonstrated that the latter 

serves as a coded mark to elicit the former during transcriptional activation 

(Riffo-Campos et al., 2015). 

Epigenetic mechanisms, including DNA methylation, histone 

modifications and ncRNA-mediated processing, have been identified as dynamic 

modulators of neuronal gene expression and function. They link environmental 

experiences to genetic effects through modulation of cellular gene expression 

profiles (Figure 1.3). Cross-talk between multiple epigenetic parameters is 

important in the regulation of neuronal development and adult neurogenesis 

(Jobe et al., 2012, Szulwach et al., 2010), both of which have been implicated in 

the pathogenicity of neuropsychiatric disorders (Jun et al., 2012). NRSF is an 

important  player   in   this dynamic regulatory network in part due to its 

interaction with miRNAs (see section 1.8.5) (Wu and Xie, 2006, Packer et al., 

2008, Conaco et al., 2006, Johnson et al., 2008) and chromatin remodelling 

complexes (see section 1.8.2) (Ballas et al., 2005)   which   together    orchestrate    

gene regulation through altering chromatin structure. Disruptions in epigenetic 

regulatory networks have been implicated in the aetiology of many common 

diseases including cancer and disorders of the CNS (Urdinguio et al., 2009, 

Kubota et al., 2012). Rett syndrome, an X-linked neurodevelopmental condition 

associated with mutations in the gene encoding MeCP2, is one such disorder 

characterised by epigenetic dysregulation (Zachariah and Rastegar, 2012). 

Several common neuropsychiatric conditions have also been attributed to 

neurodevelopmental causes and may also be linked to aberrant epigenetic 

signalling induced by genetic mutation and/or environmental pathogens. In 

support of this, studies of both maternal stressors during pregnancy in human 
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subjects and maternal separation in rodents  suggest  that  epigenetic signatures 

established during early life experiences can influence infant and adult 

behaviours (Weaver et al., 2004, Murgatroyd and Spengler, 2011, Hill et al., 

2013), which may manifest as a neuropsychiatric condition in response to 

particular environmental stressors.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Gene-environment interactions (GxE) in neurological disease. Genetic and 

environmental factors, or interplay between the two, can predispose an individual to 

neurological impairments through altering cellular gene expression profiles. Genetic variants 

embedded within neuronal pathways have the potential to regulate the transcription of genes 

implicated in behavioural processes which may lead to sensitisation of an individual to certain 

environmental stressors. Epigenetic mechanisms, such as histone modifications and DNA 

methylation, can bridge the GxE response through laying down a molecular signature of an 

environmental experience which can underpin behavioural, neuroendocrine and stress 

responses throughout later life. This in turn will be exacerbated by intrinsic (age, sex) and/or 

extrinsic (drugs, stress, lifestyle) factors which may manifest as a neurological condition.  
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1.8 The NRSF signalling pathway 

NRSF is a key transcriptional regulator involved in modulating several 

neuronal processes important for CNS integrity. It predominantly functions as a 

silencer of neuronal gene expression in differentiated non-neuronal cells 

through binding of a conserved motif termed the RE1 (repressor element-1) or 

NRSE (neuron restrictive silencing element) (Chong et al., 1995, Schoenherr and 

Anderson, 1995) located within the regulatory regions of its target genes (see 

section 1.8.1); however increasing evidence also supports a role for NRSF in 

neuronal gene activation within the CNS. The regulatory capacity of NRSF has 

extended from the initial definition of ‘master regulator’ of neuronal gene 

expression to include many biological processes including neurodevelopment, 

adult neurogenesis and neuronal plasticity (Kuwabara et al., 2004, Ballas et al., 

2005, Gao et al., 2011). It has also been implicated in many disease processes 

from disorders of the CNS to cancer were it has been proposed to act as both a 

tumour suppressor and oncogene dependent upon cellular context and isoform 

usage (Negrini et al., 2013, Coulson et al., 2000, Wagoner et al., 2010), as 

discussed in Chapter 6. Maintaining the balance between different NRSF 

isoforms within the cell may be paramount to its role in disease processing, as 

suggested from our work on small cell lung cancer (SCLC) and epilepsy, see 

section 1.8.4 (Spencer et al., 2006, Gillies et al., 2009, Coulson et al., 1999, 

Coulson et al., 2000).  
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1.8.1 The NRSE 

The canonical NRSE is a highly conserved 21 bp sequence motif which 

has been shown from in silico analysis and ChIP-seq studies in Jurkat human T 

cells and human embryonic stem cells (ESCs) to overlap with more than 2,000 

known genes within the human genome (Bruce et al., 2004, Johnson et al., 2007, 

Satoh et al., 2013), many of which are enriched in processes relevant for 

neuronal function, Figure 1.4. It was initially discovered by two independent 

groups in the genes encoding voltage-dependent sodium channel type II-alpha 

(SCN2A) and superior cervical ganglion 10 (SCG10) were it was defined as an 

element capable of mediating transcriptional repression in non-neuronal cells 

(Chong et al., 1995, Schoenherr and Anderson, 1995, Mori et al., 1992). 

Approximately 15% of human NRSEs are located within gene promoters, 

defined in this instant as regions within 5 Kb upstream of the transcriptional 

start site (TSS), however the majority are found within intergenic regions 

(40%) (Jothi et al., 2008), Figure 1.5, suggesting they may function as trans-

regulatory elements. Unlike many other TFBS, NRSEs are non-symmetrical and 

can be subdivided into two half-sites by a non-conserved central region at 

residues 10-11, Figure 1.5. These  half-sites  have  been  shown to bind NRSF 

however they are non-functional in terms of their individual repressive 

capabilities (Jothi et al., 2008, Johnson et al., 2007), suggesting the necessary 

role of co-binding factors in NRSF-mediated gene repression (Timmusk et al., 

1999, Zuccato et al., 2003), which are discussed in section 1.8.2.  

 

  



 

34 
 

  

 

 

 

 

 

 

 

 

 

 
 
Figure 1.4. Functional assignment of putative NRSEs within the human genome. Many 

NRSE-containing genes identified from in silico and ChIP-seq analyses encode for proteins 

involved in neuronal processes including neurotransmission (e.g. M4 muscarinic, DRD3 and 

GABA type β3 receptors; GABA transporter 4), neurotrophic factor pathways (e.g. BDNF and 

NTRK3), vesicle trafficking and fusion (e.g. SNAP25; synaptotagmins IV, V and VII; syntaxin 8 

and Rab3), ion channel signalling (e.g. sodium, potassium and calcium subunits) and axonal 

guidance (e.g. SCG10, netrin-2 and roundabout). Overlap of NRSF target genes identified from 

ChIP-seq studies in human T-lymphocytes (Johnson et al., 2007) and embryonic stem cells 

(Satoh et al., 2013) identified corticotropin releasing hormone signalling, glutamate receptor 

signalling, calcium signalling, synaptic long-term depression and circadian rhythm signalling as 

the top 5 most significant pathways, all of which are important for neuronal function. There are 

also many genes that encode proteins that do not have obvious neuron-specific functions, such 

as those involved in cellular metabolism, or that specify proteins that are expressed in both 

neuronal and non-neuronal tissues (e.g. nitric oxide synthase involved in the regulation of 

cardiovascular tone). Figure taken from Bruce et al. (2004). Abbreviations: BDNF, brain derived 

neurotrophic factor; DRD3, dopamine D3; GABA, gamma-aminobutyric acid; NRSE, neuron 

restrictive silencing element; NTRK3, neurotrophic tyrosine kinase receptor type 3; SNAP25, 

synaptosomal-associated protein, 25 kDa. 
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Figure 1.5. The NRSE consensus sequence and genomic distribution. Top, the canonical 21 

bp NRSF binding site found within NRSF target genes (Wu and Xie, 2006). Residues 7-9 (ACC) 

and 12-17 (GGACAG) are thought to be essential for DNA binding, with residues 1-6 (TTCAGC) 

functioning in binding stability. Bottom, Division of the NRSE into two functional half sequences, 

termed the left-half and right-half sites. NRSF occupancy at either of these two sites is thought 

to result in weaker binding affinity compared to binding at the canonical sequence. B, 

Distribution of NRSF binding sites across the human RefSeq reference genome according to 

Jothi et al. (2008). Promoters were defined as the region 5 Kb upstream of the transcriptional 

start site.  
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Other non-canonical NRSEs have been described from computational 

predictions based on position weight matrices (PWMs); probabilistic 

representations of signals in DNA or protein sequences which can be used to 

model approximate patterns of DNA-protein or protein-protein interactions, 

and ChIP-seq assays which vary in their central residues by 3-9 bp insertions 

(Zheng et al., 2009). Interestingly, these motifs have been shown to not only 

bind NRSF but can also mediate transcriptional regulation (Otto et al., 2007, 

Johnson et al., 2006, Patel et al., 2007) suggesting that such bipartite NRSEs 

could facilitate differences in gene expression and may present hotspots for 

phenotypic evolution (Wray et al., 2003). In support of this, polymorphisms 

within NRSEs have been shown to encode DNA binding affinity hierarchies, 

resulting in differential modulation of genes important in lineage-specific and 

developmental processes (Bruce et al., 2009). This coincides with earlier 

studies whereby point mutations in NRSEs located proximal to (within 2 Kb) 

the transcription start site of key genes involved in neuronal function, including 

the SCN2A, SCG10, nicotinic acetylcholine receptor β2-subunit and BDNF, 

resulted in up-regulation of reporter gene expression in vitro and/or in vivo 

(Kraner et al., 1992, Mori et al., 1992, Bessis et al., 1997, Tabuchi et al., 1999). 

Consistent with these findings, Quinn et al. (2002) identified NRSE-like motifs 

within close proximity of the major TSS of the neuropeptide genes AVP 

(arginine vasopressin), TAC1 (tachykinin 1) and more recently TAC3 

(tachykinin 3) that could support differential gene expression in vitro, which 

was speculated to reflect both the location and variation in the 3’sequences of 

these motifs relative to the classical NRSEs found within the SCN2A and SCG10 

genes (Coulson et al., 1999, Quinn et al., 2002, Gillies et al., 2009). A potential 
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role for the truncated isoform sNRSF was also proposed at these regulatory 

domains, which is discussed further in section 1.8.4.1. These data collectively 

suggest that the primary sequence of the NRSE dictates the function of these 

regulatory domains within a particular cell type, supporting a role for NRSF in 

processes other than transcriptional repression. This would be consistent with 

expression of NRSF within the brain and in differentiated neuronal cells which 

goes against its originally proposed function as a silencer of neuronal gene 

expression in non-neuronal cells (Chong et al., 1995, Mori et al., 1992, 

Schoenherr and Anderson, 1995). 

     

1.8.2 Regulation of target genes by NRSF 

NRSF is a member of the Krüppel-type zinc finger family which binds to 

its target motifs through its eight zinc-finger DNA binding domain, whereas 

repressor activity, as dogma suggests, is mediated through recruitment of co-

repressor complexes to either its amino (N)-terminal or carboxy (C)-terminal 

repressor domains (Naruse et al., 1999, Tapia-Ramirez et al., 1997). A schematic 

of the structural organisation of full-length NRSF and the truncated isoform 

sNRSF is shown in Figure 1.6.  The N-terminal of NRSF interacts with the 

transcriptional co-repressor mSin3A (mammalian homologue of yeast Sin3A) 

(Huang et al., 1999, Naruse et al., 1999, Grimes, 2000) which mediates active 

gene repression through its recruitment of HDAC1/2 (Ballas and Mandel, 2005), 

whereas the C-terminal potentiates long-term gene silencing through its 

interaction with CoREST (cofactor for REST/NRSF) (Andres et al., 1999, Lunyak 

et al., 2002), Figure 1.6. CoREST activates the recruitment of other chromatin-

modifying  partners  involved in gene repression, such as HDAC1/2, the  histone  
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Figure 1.6. Structural organisation of NRSF and sNRSF. Schematic representation of the NRSF 

gene structure and the full-length NRSF and truncated sNRSF transcripts. Top, The human NRSF 

gene has three alternative 5’ exons (I-III) which gives rise to different protein isoforms. Exons are 

represented as boxes and introns as the interconnecting lines. Vertical bars within exons denote 

the nine zinc finger motifs which are associated with DNA binding (grey bars) and nuclear 

targeting (blue bar). Alternative exon N is present in the sNRSF splice variant and introduces a 

premature stop codon, giving rise to the truncated protein variant. Middle, The full-length NRSF 

protein comprises an amino-terminal repressor domain (NT-RD), a DNA binding domain 

composed of eight zinc fingers, a lysine and proline-rich domain and a carboxy-terminal repressor 

domain (CT-RD) containing the ninth zinc finger motif. The mSin3 and coREST co-repressor 

proteins interact with the NT-RD and CT-RD of NRSF, respectively, initiating the recruitment of 

cofactors involved in chromatin remodelling such as histone deacetylases (HDACs), enabling 

NRSF to orchestrate a set of epigenetic signatures that alter gene expression profiles in the 

medium- to long-term. The mSin3-HDAC complex is associated with transient neuronal-gene 

repressive states, whereas the coREST-HDAC complex has been implicated in long-term neuronal-

gene silencing. Bottom, sNRSF lacks four of the nine zinc fingers and the CT-RD.  
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H3K4 demethylase LSD1 (lysine-specific demethylase 1), the methyltransferase 

G9a,  MeCP2  and  the  SWI/SNF ATP-dependent nucleosome-remodelling factor 

BRG1/SMARCA4 and MeCP2 (Lee et al., 2005, Lunyak et al., 2002, Roopra et al., 

2004, Battaglioli et al., 2002, Ooi et al., 2006). Figure 1.7 illustrates some of the 

major chromatin-modifying partners shown to assemble within the NRSF-

signalling complex upon binding of its target DNA sequence, facilitating 

chromatin condensation and NRSF-mediated gene repression (Ooi and Wood, 

2007).   

The co-repressor complexes that bind at NRSF target DNA varies 

between cell-types and promoter sequences meaning that NRSF can mediate 

both transient repression and long-term gene silencing. In gene repression, 

certain co-repressors such as CoREST and MeCP2 can remain bound following 

NRSF dissociation to maintain low levels of neuronal gene expression in certain 

cell types. The extent to which neuronal genes are de-repressed following 

dissociation of NRSF and its co-repressors during neuronal differentiation can 

be used to categorise NRSF target genes. Class I genes are those which are 

maximally expressed by default upon loss of NRSF binding during neuronal 

differentiation of ESCs/neural progenitors into cortical neurons implying that 

NRSF occupancy of their promoter sequences is adequate for their repression 

(Ballas et al., 2005). Class II genes, such as BDNF, are those that are expressed at 

lower levels than Class I genes due to the presence of CoREST and MECP2 at 

methyl CpG sites following dissociation of the NRSF/co-repressor complex from 

the NRSE site. Upon neuronal activation, MeCP2, mSin3 and HDAC leave the 

regulatory sequence of some Class II neuronal genes allowing for increased 

expression  levels   (Ballas et al., 2005, Ballas and Mandel, 2005).   This  dynamic  
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Figure 1.7. Chromatin remodelling mediated by the NRSF-signalling complex upon 

interaction with its target DNA. Following nucleosome repositioning (mechanism 

uncertain), a process which involves BRG1 (component of the of the SWI/SNF ATP-dependent 

chromatin-remodelling complex), NRSF binds to its target genes through the NRSE (neuron 

restrictive silencing element). Recruitment of co-repressor proteins allows for interaction with 

multiple chromatin remodelling partners including histone deacetylases (HDACs), G9a (histone 

methyltransferase), ctBP (carboxyl-terminal binding protein; NADH-binding factor) and MeCP2 

(methyl-CpG binding protein), enabling NRSF to orchestrate a set of epigenetic signatures which 

alter the chromatin structure to a condensed heterochromatin state resulting in gene 

repression. Such repressive epigenetic modifications include: decreased levels of histone 

acetylation and increased deacetylation, increased methylations at residues known to promote 

gene repression or silencing (H3K9me2/3 and H3K27me3) and decreased methylations at 

residues usually involved in gene activation (H3K4me3 and H3K9me1). Depending on cellular 

context co-activators may be recruited by NRSF, mediating open chromatin structure and gene 

activation.  
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regulatory mechanism allows for the orderly expression of neuronal genes 

during development and permits the fine tuning of neuronal gene expression in 

response to the cellular environment.  It may also be an important mechanism 

for neural plasticity in mature neurons in response to specific stimuli. Long-

term silencing of NRSF target genes is also dependent, in part, upon the 

NRSF/CoREST/MeCP2 co-repressor complex. Tissue-specific and promoter-

dependent associations of this silencing complex at distinct target sequences 

has been shown to orchestrate methyl CpG-dependent inactive chromatin states 

across extended chromosomal intervals, including neighbouring genes that do 

not contain a NRSF binding site, suggesting that this complex may be involved 

in nucleation and spreading of silenced chromatin states in its role in gene 

silencing (Lunyak et al., 2002). 

   In addition to modulating chromatin structure, the NRSF complex can 

also regulate the rate of transcription. It does this through targeting the basal 

transcription machinery including the TATA-box-binding protein (TBP), 

inhibiting the formation of the transcription pre-initiation complex, and RNA 

polymerase II through the recruitment of small C-terminal domain 

phosphatases which inhibit polymerase activity of neuronal genes (Murai et al., 

2004, Yeo et al., 2005). The role of NRSF and its co-repressors in modulating 

transcription inhibition is thought to be important in regulating genes in which 

the NRSE is located far from the corresponding transcription start sites, 

however the relative contributions of chromatin modification over interaction 

with the transcriptional machinery in regulating gene expression is not known 

(Ooi and Wood, 2007).   
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The role of NRSF as a transcriptional repressor in non-neuronal cells is 

well documented; however its expression within several mature neuronal cell 

types suggests that it may have alternative functions other than transcriptional 

repression within the CNS. It has been proposed that NRSF may also act as a 

transcriptional enhancer and translational activator dependent upon cellular 

context, genomic location, isoform usage and associated cofactor binding 

assemblies at its target sequences (Bessis et al., 1997, Seth and Majzoub, 2001, 

Kallunki et al., 1998, Yoo et al., 2001, Kim et al., 2008, Spencer et al., 2006, 

Coulson et al., 1999, Coulson et al., 2000, Gillies et al., 2009). Bessis et al. (1997) 

showed that in neuronal cells NRSEs can direct transcriptional activation of 

reporter gene constructs when positioned within 50 bp upstream or 50-250 bp 

downstream of a synthetic promoter. This effect was not observed in non-

neuronal cells or following exogenous expression of NRSF in neuronal cells 

suggesting that NRSF will act as a transcriptional repressor, regardless of 

promoter context, when expressed at high levels (Bessis et al., 1997). The role 

of NRSF as a transcriptional enhancer is supported by previous work in our 

group relating to NRSF-mediated regulation of neuropeptide gene expression 

within rat hippocampal neurons and human neuroblastoma cells as discussed 

in section 1.8.4. In addition, it has been demonstrated that NRSF plays a dual 

role in the activation and repression of the glucocorticoid response in vitro; full-

length NRSF or its C-terminal domain repressed the hormonal response 

induced by cortisol treatment across different cell types (chick retinal cells, 

monkey fibroblast-like cells and human cervical cancer cells), whilst the N-

terminal domain enhanced it markedly (Abramovitz et al., 2008). Over-

expression of REST4, which is analogous to the truncated human variant sNRSF 
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and therefore lacks the C-terminal domain, in mouse neuroblastoma cells 

devoid of detectable levels of the full-length protein similarly enhanced this 

activity suggesting that the truncated variant may be involved in activation 

rather than antagonising the activity of full-length NRSF (Abramovitz et al., 

2008). This was also demonstrated in vivo whereby elevated levels of REST4 in 

the mPFC of neonatal mice and adult rats correlated with the up-regulation of 

several NRSE-containing genes including those encoding for miR-9-3, miR-132 

and miR-212 (Uchida et al., 2010). Full-length NRSF has also been shown to 

promote transcriptional activation of neuronal gene targets in differentiating 

adult hippocampal stem cells through binding of a double stranded ncRNA 

containing a NRSE site which mediates co-repressor dismissal and recruitment 

of co-activators (Kuwabara et al., 2004, Ballas and Mandel, 2005). Collectively 

these data suggest that NRSF is more complex than its initial role in regulating 

neuronal gene expression in non-neuronal tissues and may serve a dual 

function as both a repressor and activator of neuronal circuitries not only at the 

transcriptional level but also post-transcriptionally as suggested from studies 

on its modulation of the µ-opioid receptor (Kim et al., 2008). It may therefore 

serve as a mechanism in fine-tuning the expression of key genes implicated in 

essential biological processes relevant to development, normal physiology and 

disease. 

  



 

44 
 

1.8.3 Regulation of NRSF expression 

NRSF is highly expressed in embryonic stem cells and is down-regulated 

upon terminal differentiation of neuronal progenitor cells into neurons. In line 

with this lineage specific patterning, NRSF has been shown to be necessary for 

appropriate development as aberrant expression in the developing embryo 

results in ectopic expression of neuronal genes in non-neuronal tissues and 

early embryonic lethality (Chen et al., 1998). In mature tissues, NRSF is highly 

expressed in non-neuronal cells but is also found at much lower levels in 

specific neuronal tissue types suggesting that its expression is largely 

dependent upon the cellular and physiological environment. Furthermore, 

NRSF expression can be up-regulated in different regions of the adult brain, 

including the cortex, hippocampus and basal nuclei, in response to neuronal 

activation as demonstrating by treatment with cocaine and the glutamate 

analogue kainic acid (Chandrasekar and Dreyer, 2009, Palm et al., 1998, 

Spencer et al., 2006). Low levels of NRSF in mature neurons are maintained 

through its cytoplasmic sequestering in part through interaction with the 

Huntingtin (Htt) protein (Zuccato et al., 2003). Despite the extensive number of 

studies to elucidate the regulatory function of NRSF, relatively few have 

addressed the modulation of its own expression. Different isoforms encoded 

from the NRSF gene have been described which arise through alternative 

splicing of the first three non-coding exons (Palm et al., 1998). Three promoters 

have also been identified from the region which show high sequence 

conservation, however none of these appear to support cell– or species-specific 

expression based on reporter gene analysis in a number of cell lines and tissue 

types, and from expression profiling of the alternative 5’ exons which have been 
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found to be expressed across a range of different cells tested to date 

(Koenigsberger et al., 2000). It is therefore possible that the levels of 

endogenous NRSF are not fully governed by transcription per se but are perhaps 

modulated in a cell-specific manner at the post-transcriptional level through 

differential splicing, mRNA stability or epigenetic modifications.  

Several transcription factors have been identified as potential 

modulators of NRSF expression. For example, based on in silico predictions, 

CREB and Sp1 have been suggested to regulate NRSF expression due to the 

presence of binding sites for these factors within the flanking sequences of the 

5’ exons of the NRSF gene. These have been experimentally validated as positive 

regulators of NRSF expression in human small cell lung cancer (SCLC) and 

embryonic kidney cell lines for CREB (Kreisler et al., 2010), and in rodent 

neuroblastoma/glioma cells for Sp1 (Ravache et al., 2010), through knock-

down, over-expression and/or reporter gene assays. NRSF is also a direct target 

of Oct4 and Nanog, with knock-down of these two transcription factors 

resulting in reduced NRSF transcription in mouse ESCs (Loh et al., 2006). 

Regulation along the Wnt-signalling pathway has also been shown to modulate 

NRSF expression patterns during development, with over-expression of Wnt or 

β-catenin enhancing NRSF expression in chick embryos (Nishihara et al., 2003). 

In addition, several epigenetic mechanisms have been identified in the down-

regulation or repression of this transcription factor including CpG methylation, 

MeCP2 binding and miRNA mediated processes (Kreisler et al., 2010, 

Abuhatzira et al., 2007, Mortazavi et al., 2006). Much remains to be explored in 

terms of the mechanisms governing NRSF mRNA and protein expression and 

likely reflects dynamic interaction between transcriptional regulation, 



 

46 
 

epigenetic processing and regulatory feedback networks suggested from 

bidirectional interactions between NRSF and the brain-expressed miRNAs (see 

section 1.8.5) (Wu and Xie, 2006) and the presence of a NRSE motif within its 

own genomic sequence; indicative of autoregulation (Johnson et al., 2007).    

 

1.8.4 The NRSF pathway in disease 

The majority of our understanding about the role of NRSF in normal 

adult tissues has come from studies of disease states in which NRSF function is 

modified. Dysregulation of NRSF and its target genes has been associated with a 

catalogue of disease processes ranging from CNS pathologies to tumourigenesis 

in multiple cancer types. Our group has previously performed extensive 

analysis of cell-specific transcriptional regulation of the neuropeptide genes 

AVP, TAC1 and TAC3 by NRSF. As previously mentioned, all of these 

neuropeptide genes contain NRSEs within their proximal promoter regions and 

have been shown to be differentially regulated by NRSF in vitro in both a cell-

specific and stimulus-dependent manner (Coulson et al., 1999, Quinn et al., 

2002, Spencer et al., 2006, Gillies et al., 2009). The action of the NRSF-signalling 

complex at these gene promoters has, in part, been implicated in disease models 

which are discussed in section 1.8.4.1, suggesting that normal levels of NRSF, 

and thus its target genes within the cell, may be important for disease 

processing. NRSF is also a modulator of multiple epigenetic parameters as 

illustrated in Figure 1.7. Association with multiple chromatin-modifying 

partners could lead to medium- to long-term changes in gene expression such 

that target genes for NRSF implicated in neuronal activation are no longer able 

to respond appropriately to the normal physiological cues required for CNS 
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function. This is demonstrated in a rodent model of hippocampal 

neurodegeneration associated with ischemia, whereby binding of NRSF and 

CoREST at a subset of transcriptionally active genes, including the clinically 

relevant GRIA2 (glutamate receptor, ionotropic, AMPA 2) and GRIN1 (glutamate 

receptor, ionotropic, NMDA 1) genes encoding glutamate receptor subunits, in 

response to an ischemic insult resulted in NRSF-mediated epigenetic 

remodelling and aberrant gene silencing in these cells (Noh et al., 2012). In 

addition to the complex role of NRSF in modulating cell-specific neuronal gene 

expression under physiological and pathological states, this regulatory network 

is complicated by the putative antagonistic properties of the disease-associated 

variant sNRSF whose function is little understood and not well investigated due 

to its low cellular expression (approximately 1% of total NRSF) in comparison 

to the full-length protein (Palm et al., 1998). 

 

1.8.4.1 sNRSF 

NRSF has several different isoforms generated through alternative 

splicing of the 5’ exon. The most well studied of these is sNRSF (short NRSF) 

which arises through coding of an alternative exon, termed exon N, producing a 

premature stop codon which results in a truncated protein lacking the C-

terminal repressor domain (Palm et al., 1998). sNRSF (analogous to rodent 

REST4), which is specifically expressed in neurons or certain cancers (Palm et 

al., 1998, Coulson et al., 2000, Wagoner et al., 2010), has been shown to display 

dominant-negative effects over full-length NRSF (Shimojo et al., 1999, Coulson 

et al., 2000). This was first documented in SCLC were it was shown to 

antagonise the action of the full-length protein causing de-repression of the 
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neuropeptide gene AVP, which is speculated to be an early marker in defining 

the neuroendocrine phenotype of this aggressive tumour type (Coulson et al., 

2000). More recently, a similar mechanism has been reported in breast cancer 

whereby ‘‘REST-Less’’ tumours, an aggressive subset of breast cancers that lack 

functional REST/NRSF, often express a truncated NRSF isoform (Wagoner et al., 

2010). Loss of NRSF in breast cancer has previously been correlated with 

inappropriate expression of TAC1 (Reddy et al., 2009). Patients with the ‘REST–

less’ breast cancer subtype were identified as being significantly more at risk of 

earlier disease recurrence than those with fully functional NRSF, in this case 

irrespective of the usual risk factors; oestrogen receptor or HER2 status.  

Alternatively, it has been suggested that NRSF may function as a 

transcriptional enhancer as exemplified by previous work from our group on 

the tachykinin genes TAC1 and TAC3 (Spencer et al., 2006, Gillies et al., 2009). 

Using in vitro and in vivo models of epilepsy, both NRSF and REST4 were shown 

to be significantly up-regulated in rat hippocampal neurons following kainic 

acid treatment which correlated with up-regulation of mRNA expression for the 

proconvulsant gene TAC1. This increase was most dramatic for REST4. Analysis 

of TAC1 promoter activity using reporter gene constructs and mRNA expression 

following over-expression of NRSF in dissociated rat hippocampal neurons 

supported increased TAC1 transcription for the truncated variant but not full-

length NRSF which in contrast supported up-regulation of the anticonvulsant 

gene galanin (Spencer et al., 2006). This suggests that during seizure full-length 

NRSF may function in neuroprotection whereas the truncated isoform 

modulates neuropathological processes.  A similar mechanism was observed for 

another proconvulsant gene TAC3 in human neuroblastoma cells. Consistent 
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with a model in which NRSF modulation of tachykinin gene expression is a 

mechanism operating during epilepsy, increases in both endogenous gene 

expression and the activity of the TAC3 promoter by the full-length and 

truncated NRSF variants were diminished by the action of anticonvulsant drug 

treatment (Gillies et al., 2009). The role of sNRSF in target gene activation and 

its inferred association with disease processes may in part result from its 

absence of the C-terminal repressor domain (see Figure 1.6) (Abramovitz et al., 

2008), meaning that distinct interactions mediated by CoREST cannot be 

initiated. This in turn may result in aberrant gene expression profiles associated 

with modulation of NRSF levels under several pathological states. However, the 

mechanistic role of sNRSF remains controversial. Differential expression of 

NRSF and its target genes, such as the neuropeptides, in models ranging from 

cancer to epilepsy suggests a commonality of mechanisms in cellular responses 

to cellular stress and damage and may reflect an overlapping mechanism 

between CNS physiology, pathology and cancer; particularly those with an 

endocrine phenotype such as SCLC.  

 

1.8.5 NRSF and the brain-expressed miRNAs 

The overlapping role of NRSF and miRNAs in negatively regulating 

neuronal gene expression, and their associations with neurological disorders, 

suggests a common pathway in the development of CNS dysfunction. 

Comparative sequence analysis has shown that NRSF and its co-repressors 

CoREST and MeCP2 may both target or be targeted by numerous brain-

expressed miRNAs (Wu and Xie, 2006), see Figure 1.8 and Table 1.2. This has 

been experimentally validated for some of these putative interactions. For 



 

50 
 

example, NRSF has been shown to play a role in determining neuronal identity 

through negatively regulating the transcriptional expression of neuron-specific 

miR-124 through binding to its promoter sequence in neuronal progenitors and 

non-neuronal cells (Conaco et al., 2006). In addition, the NRSF-regulated bi-

functional miRNA miR-9/miR-9* has also been shown to negatively regulate 

NRSF and CoREST expression, respectively, using an in vitro reporter gene 

system and pre-miRNA over-expression assays (Packer et al., 2008). In relation 

to neurological disease pathways, in a recent mouse cell line model of 

Huntington’s disease, NRSF knock-down was shown to up-regulate the 

expression of several miRNAs including miR-137 which was validated as a 

direct target of NRSF through ChIP (Soldati et al., 2013). The human MIR137 

gene has also been validated as a NRSF target (Warburton et al., 2014), as 

discussed in Chapter 4 of this thesis. Furthermore, miR-137 expression, 

amongst others (Urdinguio et al., 2010), has been shown to be epigenetically 

regulated by a core member of the NRSF-complex, MeCP2, in a mouse model of 

Rett syndrome (Szulwach et al., 2010), suggesting an important role for this 

regulatory network in mediating aberrant neuronal gene expression associated 

with CNS disorders. A role for the truncated variant REST4 in modulating brain-

related miRNA expression has also been demonstrated. In a rodent model of 

early-life stress, increases in REST4 mRNA and protein levels in the mPFC of 

postnatal rats subjected to maternal separation were observed relative to 

control rats which correlated with significant up-regulation of miR-9-3, miR-

132 and miR-212 (Uchida et al., 2010); all of which contain NRSEs within 5 Kb 

of their major TSS, Table 1.2, which is in fitting with previous studies showing 

that NRSEs located proximal to the TSS of target genes may function in gene 
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activation (Spencer et al., 2006, Gillies et al., 2009, Quinn et al., 2002). The 

changes in REST4 and target miRNA expression in maternally separated rats 

were associated with depressive-like behaviours in adult rats when exposed to 

stressful environments, highlighting an important role for NRSF-signalling in 

the development of stress-vulnerability (Uchida et al., 2010). Collectively these 

findings support the existence of extensive regulatory networks involving the 

NRSF-signalling pathway and the brain-related miRNAs in modulating the 

transcriptional landscape and maintaining neuronal identity, possibly through 

double-negative feedback mechanisms suggested from reciprocal interactions 

between these regulatory factors. Factors such as genetic variation and the 

environment have the potential to modify this regulatory circuit which may 

result in differential gene expression that could manifest as a disease trait. Such 

an interaction is explored in Chapter 4 using the schizophrenia genome-wide 

associated hit MIR137 as a candidate miRNA potentially involved in NRSF-

signalling as a mechanism underlying schizophrenia and other disease 

pathways, as discussed in Chapter 6.  
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Figure 1.8. NRSF-miRNA signalling pathway. Schematic showing interactions between the 

NRSF-signalling complex and the brain enriched miRNAs. Blue ovals represent members of the 

NRSF-signalling complex, pink and purple ovals represent miRNAs; pink symbolise miRNAs 

implicated in schizophrenia from genome-wide association studies or expression analysis in 

post-mortem brains, see Beveridge and Cairns (2012). Blue and pink arrows represent 

predicted (dashed lines) or validated (block lines) targets of the NRSF-complex and the miRNAs, 

respectively.  
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Table 1.2. Brain-enriched microRNAs that are validated targets of NRSF 

 
Note: Neuron restrictive silencing element (NRSE) sequences taken from Wu and Xie (2006) and Warburton et al. (2014) (for miR-137). ChIP, chromatin 
immunoprecipitation; HTT, Huntingtin; NSC, neural stem cell. 

miRNA  Host gene NRSE Consensus Sequence Distance of NRSE 
from pre-miRNA 
(Kb) 

Reference Comments 

  T  AG    A CG    G 

TTCAGCACCNNGGACAGCGCC 

miR-9 
miR-9*/miR-9-3 

C1orf61 
LINC00925 

TCCAGCACCACGGACAGCTCC 
CTCAGCACCATGGCCAGGGCC   

0.5 upstream 
3.0 upstream 

Mortazavi et al., 2006;  
Johnson et al., 2008; Uchida, 
2010; Soldati et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice, mouse NSC line and human Jurkat T-lymphocyte 
cells (miR-9 only). REST4 target in rat mPFC.  

miR-29a 
miR-29b 

LOC646329 TTCAGCACCATGGTCAGAGCC  11.1 downstream 
11.8  downstream 

Mortazavi et al., 2006; 
Johnson et al., 2008;   
Soldati et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice (miR-29b only), mouse NSC line and human Jurkat 
T-lymphocyte cells. 

miR-124-1 
miR-124-2 
miR-124-3 

LINC00599 

MIR124-2HG  
Intergenic 

TTCAGTACCGAAGACAGCGCC  
ATCAAGACCATGGACAGCGAA  
TTCAACACCATGGACAGCGGA 

21.7 upstream     
3.7 upstream 
2.4 upstream 

Mortazavi et al., 2006; 
Johnson et al., 2008; Soldati 
et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice, mouse NSC line and human Jurkat T-lymphocyte 
cells (miR-124-1 only). 

miR-132/212 Intergenic ATCAGCACCGCGGACAGCGGC  272 bp upstream Johnson et al., 2008; Soldati 
et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice and mouse NSC line. REST4 target in rat mPFC. 

miR-135b  BLACAT1 TTCAGCACCTAGGACAGGGCC 10.7 upstream      Johnson et al., 2008; Soldati 
et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice and mouse NSC line. 

miR-137 MIR137HG GTCAGAGGACCAAGCTGCCGC 
TTGAGTGCCATGGCGGCCAGA 

Overlapping 
0.4 upstream 

Soldati et al., 2013; 
Warburton et al., 2014 
Chapters 4 & 6 

Validated through ChIP in human SH-SY5Y neuroblastoma and 
MCF-7 breast cancer cells, rat cortex and striatal cells derived 
from mutant HTT knock-in mice. Epigenetically regulated by 
NRSF co-repressor MeCP2. 

miR-139  PDE2A TTCAGCACCCTGGAGAGAGGC  61.8 upstream,    
2.5 upstream of 
PDE2A host gene 

Mortazavi et al. 2006;  
Johnson et al., 2008 

Validated through ChIP in mouse NSC line and human Jurkat T-
lymphocyte cells.  

miR-153 PTPRN TTCAGCACCGCGGACAGCGCC  14.1 upstream Mortazavi et al.2006;  
Soldati et al., 2013 

Validated through ChIP in striatal cells derived from mutant HTT 
knock-in mice and human Jurkat T-lymphocyte cells. 
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1.9 MicroRNAs in the CNS 

The discovery of miRNAs over two decades ago revolutionised our 

understanding of the role of small RNAs in the regulation of gene expression. 

They are a large family of single-stranded ncRNAs of approximately 18-25 

nucleotides (nt) in size that can be highly conserved throughout evolution, 

present in both plants and animals (Zhang et al., 2006, Bartel, 2004). Many 

miRNAs share sequence homology across different species suggesting an 

important role in essential biological processes. The significance of these 

regulatory RNAs in almost every aspect of cellular functioning is rapidly being 

recognised. It is estimated that 1-5% of the human genome encodes for miRNAs 

and that at least 30% of protein-coding genes are under their regulatory control 

(Krol et al., 2010). Furthermore, individual miRNAs can regulate hundreds of 

target mRNAs in tandem (Lim et al., 2005) making them an intriguing area of 

study in normal physiological and disease processes.  

 

1.9.1 MicroRNA Biogenesis 

Based on their genomic location, miRNAs can be classified as being 

intergenic or intragenic (Figure 1.9). Intergenic miRNAs are located within 

currently undefined regions of the genome and are transcribed from their own 

unique promoters (Corcoran et al., 2009). In contrast, intragenic miRNAs are 

encoded as part of their respective host gene and are thought to share the same 

transcriptional machinery (Lee et al., 2004). In support of this, evidence has 

shown that intragenic miRNAs are expressed in parallel with their host 

transcripts and, as such, studies have successfully utilised primary (pri)-miRNA 

expression   profiling   in   the   identification  of  miRNA  target  mRNAs  through  
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Figure 1.9. Genomic location of human miRNAs. *Other refers to miRNA genes within 

untranslated regions or ‘mixed’ miRNA genes that can be assigned to either intronic or exonic 

miRNA groups depending on the alternative splicing patterns (Godnic et al., 2013). 

 

 

inverse correlation of expression levels (Rodriguez et al., 2004, Baskerville and 

Bartel, 2005, Ronchetti et al., 2008, Gennarino et al., 2009). For the canonical 

pathway, subsequent steps in miRNA biogenesis are conserved between the 

miRNAs regardless of their genomic location. The miRNA biogenesis pathway is 

represented in Figure 1.10. During miRNA synthesis, a long pri-miRNA 

transcript (typically more than 1 Kb in length) is transcribed by RNA Pol II, 

forming an imperfectly base-paired, double stranded hairpin structure that has 

a 5’ cap and 3’ poly-A tail, typical of mRNA (Lee et al., 2004). Following 

transcription, the stem-loop structure of pri-miRNAs is recognised by the 

microprocessor complex composed of the RNase III endonuclease Drosha and 

its associated protein DGCR8 (DiGeorge syndrome critical region 8). This 

complex cleaves the pri-miRNA forming  a  small  (70-100 nt)  hairpin  structure  
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Figure 1.10. The miRNA biogenesis pathway. Canonical miRNA genes are transcribed as 

primary (pri)-miRNAs (typically more than 1 Kb in length) by RNA Pol II and cleaved by the 

Microprocessor complex composed of the RNase III enzyme Drosha and the double-stranded 

RNA binding protein, DGCR8, forming a precursor (pre)-miRNA. Intronic miRNAs require an 

additional splicing event to generate the pre-miRNA; some of which are processed independent 

of the Microprocessor complex (non-canonical pathway). Pre-miRNAs are exported to the 

cytoplasm by Exportin-5 and incorporated into the RISC-loading complex for further cleavage 

into a ∼22 nt mature miRNA (miR) duplex by the RNAse III enzyme Dicer. One strand of the miR 

duplex is preferentially loaded into the RISC complex with along with members of the AGO 

family of proteins producing a functional complex for targeting mRNA (see Figure 1.12). 

Abbreviations: AGO, Argonaute; DGCR8, DiGeorge syndrome critical region 8; m7G, 7-

methylguanosine 5’ cap; RISC, RNA-induced silencing complex; TRBP, TAR (trans-activating 

response element) RNA binding protein. 
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termed the precursor (pre)-miRNA. For intronic miRNAs, an additional splicing 

step takes place following co-transcription of the miRNA gene with its host 

transcript. For unknown reasons, this splicing event occurs more slowly in 

miRNA-containing introns than it does in adjacent introns and is thought to 

involve a splicing commitment complex which tethers the intron whilst Drosha 

cleaves the miRNA hairpin, forming the pre-miRNA (Kim et al., 2009). Some 

intronic miRNAs do not require the microprocessor complex and are instead 

processed by a non-canonical pathway. These miRNAs are termed mirtrons and 

represent pre-miRNAs that are defined by the entire length of the intron from 

which they are processed. They contain a splice site necessary for their excision 

from the primary transcript and are linearised by DBR1 (debranching RNA 

Lariats 1 enzyme) generating the pre-miRNA (Havens et al., 2012). Pre-miRNAs 

are exported from the nucleus to the cytoplasm by the Ran-dependent nuclear 

transport receptor exportin-5 for further processing. Once in the cytoplasm, the 

pre-miRNA is incorporated into the RISC (RNA-induced silencing complex)-

loading complex and further cleaved by the cytoplasmic RNase III Dicer forming 

a mature miRNA duplex of approximately 22 nt. The low internal stability of 

these duplexes, generally at the 5’-anti-sense terminus, causes them to unwind 

allowing incorporation of the thermodynamically unstable strand into the RISC 

complex and rapid degradation of the alternative strand (Khvorova et al., 2003). 

 

1.9.2 Mode of action of mature miRNAs in gene regulation 

Mature miRNAs predominantly function as negative regulators of target 

mRNAs, and thus inhibitors of protein synthesis, through RNA-interference 

based mechanisms. The miRNA-induced silencing complex (miRISC) binds to 
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the 3’-untranslated region (UTR) of target mRNAs through imperfect 

complementary base-pairing involving positions 2-8 of the 5’-proximal 

sequence of the guide miRNA, termed the ‘seed’ sequence (Bartel, 2009). This 

imperfect hybridisation results from miRNA-mRNA duplexes containing 

mismatches and bulges in the central region corresponding to positions 10-12 

of the miRNA sequence (Figure 1.11), preventing mRNA cleavage by 

endonuclease activity which is typical of the closely related small-interfering 

RNAs (siRNAs) (Hutvagner and Zamore, 2002).  

 

 

 

 

 

Figure 1.11. Binding of the miRNA-induced silencing complex (miRISC) to target mRNA. 

The miRISC-complex binds to the 3’-untranslated region (UTR) of target mRNAs through 

imperfect complementary base-pairing involving the ‘seed’ sequence (typically position 2-8) of 

the guide miRNA; highlighted in red in the mature miRNA sequence for miR-137. Binding of the 

miRISC-complex represses mRNA translation or promotes deadenylation and degradation or 

storage (see Figure 1.12). Mismatches in the central region corresponding to positions 10-12 of 

the miRNA sequence forms bulges that prevent endonuclease mRNA cleavage and permit 

targeting of hundreds of mRNAs through imperfect hybridisation. Figure adapted from 

http://upload.wikimedia.org/wikipedia/commons/a/a7/MiRNA.svg.  

http://upload.wikimedia.org/wikipedia/commons/a/a7/MiRNA.svg�
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As a consequence each individual miRNA can potentially target hundreds of 

target mRNAs. Furthermore, target mRNA 3’UTRs can present several miRNA 

binding sites and it has been shown in vitro that multiple copies of the same 

miRNA or different miRNAs can act in a concerted manner to inhibit mRNA 

translation (Doench and Sharp, 2004).  This effect was dependent upon the 

cellular concentration of both mRNA and miRNA suggesting that miRNAs 

regulate the fine-tuning of protein synthesis in a context-dependent manner. 

Upon binding of target mRNAs, the miRISC complex mainly exerts its repressive 

function through translational repression and/or facilitating mRNA 

deadenylation and subsequent storage or degradation within processing bodies 

(P-bodies), Figure 1.12. The degree of sequence identity appears to determine 

which miRNA-mediated post-transcriptional regulatory mechanism is 

employed as it has been shown that perfect complementary base-pairing results 

in Argonaute (Ago)-2-mediated mRNA cleavage and degradation (Hutvagner 

and Zamore, 2002, Hammond et al., 2001). Although the majority of predicted 

and experimentally characterised miRNA seed sequences are located within 

mRNA 3’ UTRs, they have also been identified within coding regions and 

5’UTRs. Interestingly, targeting of mRNA 5’ UTRs has been associated with 

translational activation (Orom et al., 2008, Fehr et al., 2012).  The miRNAs may 

also function in transcriptional regulation. It has recently been demonstrated 

that miRNAs function in transcriptional repression and activation through 

targeting of gene promoters (Turner and Morris, 2010). The mechanisms 

involved remain unclear however miRNA-mediated repression was shown to 

involve the recruitment of Ago-1, Polycomb-group (PcG) component enhancer 
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of zeste homolog 2 (EZH2) and histone methylation (H3K27me3) at the 

targeted promoters (Gonzalez et al., 2008).  

 

1.9.3 Expression and function of miRNAs in the brain 

Approximately 70% of mammalian miRNAs can be experimentally 

detected in the brain or in primary neuronal cultures (Cao et al., 2006), 

however only a small set have been shown to be brain-specific or enriched 

(Landgraf et al., 2007). Some of the current miRNAs identified as playing 

important roles in neurodevelopment and function, and validated targets of 

NRSF (see Table 1.2), are summarised in Table 1.3. Studies addressing the 

expression profiles of brain-related miRNAs have shown them to display 

regional, cell-specific and sub-cellular compartmentalisation (Bak et al., 2008, 

Landgraf et al., 2007, Olsen et al., 2009, Boudreau et al., 2014, Krichevsky et al., 

2003, Cougot et al., 2008). Several miRNAs have been shown to be enriched or 

depleted in dendrites, axons and synaptoneurosomal preparations (Pichardo-

Casas et al., 2012). In addition, components of the miRISC complex such as Ago2 

and Dicer have been isolated from pre- and post-synaptic terminals (Murashov 

et al., 2007, Hengst et al., 2006, Lugli et al., 2008) suggestive of localised miRNA 

synthesis for rapid reposes to neuronal-activation. The mechanisms underlying 

localisation of miRNAs within specific neuronal compartments remain 

unknown and may involve associations with RNA-binding proteins that shuttle 

or anchor miRNAs to particular sub-cellular compartments. Support for this 

comes from interactions between brain-enriched miRNAs such as miR-132 with 

FMRP (fragile-X mental retardation protein), an important RNA-binding protein 

that interacts with components of the RISC, in modulating dendritic spine 
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morphology through regulation of localised protein translation (Edbauer et al., 

2010). These findings demonstrate the dynamic tempo-spatial expression of 

miRNAs in the developing and adult brain, indicating a central role in 

modulating neuronal gene expression in response to developmental and 

environmental cues. Given the complex nature of their biogenesis and their 

extensive regulatory potentials, it is unsurprising that dysregulation of several 

brain expressed miRNAs and their target mRNAs have been implicated in the 

aetiology of neurological disorders (see Table 1.3). Exploration of a regulatory 

network involving NRSF and the brain-enriched miRNAs is addressed in this 

thesis using MIR137 as a novel NRSF target gene (Chapter 4) and through in 

silico predictions of NRSF modulation of miRNA networks using a selection 

criteria based on our functional analysis of MIR137 (Chapter 5). 
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Figure 1.12. Mechanisms involved in microRNA-mediated gene regulation. Mature miRNAs 
are incorporated into the miRNA-induced silencing complex (miRISC) containing an AGO RNA-
interference family member (1-4 in humans). The miRNA guides RISC to the 3’UTR of target 
mRNAs for RNA-interference based gene regulation which is thought to occur through several 
different mechanisms. Destabilisation of mRNA targets and subsequent translational inhibition 
and mRNA degradation is the main repressive mechanism (Guo et al., 2010). This process is not 
fully understood but is thought to involve GW182 (glycine-tryptophan protein of 182 kDa) 
recruitment which binds Ago providing a direct docking-platform for interaction with 
associated protein complexes. One such interaction involves the poly-A-binding protein 1 
(PABPC1) which binds the poly-A tail of mRNAs and serves to recruit several proteins 
important in translational regulation and mRNA decay. The N-terminal of PABPC1 interacts 
with the mRNA 5’ cap structure via the eukaryotic initiation factor 4G (eIF4G) inducing the 
closed-loop conformation which is thought to stimulate translation and protect the mRNA 
termini from degradation. GW182 is thought to compete with eIF4G for PABPC1 binding sites, 
inhibiting formation of the closed-loop and thus preventing translation (Tritschler et al., 2010). 
PABPC1 also interacts with the CCR4-NOT deadenylation complex, which causes poly-A tail 
deadenylation and subsequent mRNA storage or decay (Fabian et al., 2011). Abbreviation: AGO, 
Argonaute; CCR4, chemokine (C-C motif) receptor 4; NOT, negative regulator of transcription.  
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Table 1.3. Brain enriched miRNAs important for neurodevelopment and disease  
 
MicroRNA Target genes Expression and function Disease associations 

miR-9 Foxg1, Gsh2, 
NRSF, TLX 

Highly expressed during cortico-
genesis with reduced cortical 
levels in postnatal and adult 
brain. Highly expressed in FC, H, 
MB and Cb. Over-expressed in 
primary brain tumours 
(astrocytoma, oligodendroglioma, 
glioblastoma multiforme). 
Represses glial cell 
differentiation, inhibits 
proliferation and stimulates 
migration and neuronal 
differentiation of ES cells in vitro. 

↓ AD and HD 

miR-9* CoREST Highly expressed in NSCs and 
during mammalian corticogenesis 
with reduced cortical levels in 
postnatal and adult brain. Over-
expressed in primary brain 
tumours (astrocytoma, 
oligodendroglioma, glioblastoma 
multiforme). Induces neuronal 
differentiation.  

↓ HD, SCZ 

miR-29a/b BACE1 Undetectable in embryonic 
tissues. Highly expressed in adult 
cortex, striatum and astrocytes. 

↓ AD, SCZ  

miR-124 Cdc42, CDK6, 
CREB1, PTBP1, 
Rac1, SCP1, 
SOX9  

Highly expressed in the FC, H, MB 
and Cb. Expressed in neuronal 
cells and microglia but not 
astrocytes. Expression levels 
increase throughout 
neurodevelopment; plays a key 
role in the differentiation of NPCs 
to mature neurons. Stimulates 
neuronal differentiation and 
represses glial differentiation of 
ES cells in vitro in concert with 
miR-9. Involved in synaptic 
plasticity, adult neurogenesis, 
memory formation, neuronal 
survival under ischemic 
conditions and alleviating 
neuronal cell death. 

↓ FXS, AD, HD 

miR-132 BDNF, GluR1, 
kalirin7, MeCP2, 
NR2A/B, 
p250GAP 
(brain-enriched 
NMDA receptor-
interacting 
RhoGAP), Rac1 

Highly expressed in the H, FC and 
Cb. Involved in neuro-
development and maturation. 
Enriched at synapses and 
dendrites, plays a key role in 
activity-dependent dentritic 
development, morphology and 
plasticity, neurite outgrowth and 
synaptic plasticity.  

↑ RS, SCZ; ↓FXS and HD 
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miR-135b DISC1, FOXO1, 
NDR2   TGF-β  

Highly expressed in Cb and 
mediodorsal nucleus of thalamus. 
Regulates neuronal 
differentiation in hESC, regulation 
of immune system and renin-
angiotensin-aldosterone system, 
inhibits differentiation of 
osteoprogenitor cells, regulates 
Wnt-signalling pathway. 

In vitro allele-specific 
regulation of DISC1 by 
seed sequence SNP 
rs11122396; in LD with 
rs3737597 previously 
associated with SCZ and 
MD. Dysregulated in  
mouse cell line model of 
HD. 

miR-137 CACNA1C, 
CSMD1, 
C10orf26, EZH2, 
LSD1, TCF4, 
ZNF804A 

Highly expressed in the Am and 
H. Also expressed in the ACC, 
dlPFC, NAc, OFC and BG. 
Regulates neurodevelopment, 
neuronal maturation, adult 
neurogenesis, NSC differentiation 
and inhibits dendritic spine 
outgrowth.  

↓ AD, SCZ; SCZ GWAS 

miR-153 APLP2, APP, 
SNAP-25  

Highly expressed in the 
developing brain. Implicated in 
pre-synaptic vesicle release, 
protein secretion and motor 
neuron patterning and 
outgrowth. 

↑ SCZ; ↓ AD 

 

Note: Disease associations are based on studies in human samples unless stated otherwise and 
are reported or reviewed in Maes et al. (2009), Chang et al. (2009), Olde Loohuis et al. (2012), 
Beveridge and Cairns (2012), Yin et al. (2014), Rossi et al. (2014) and Long et al. (2012). 
Abbreviations: ACC, anterior cingulate cortex; AD, Alzheimer’s disease; Am, amygdala; BG, basal 
ganglia; C, cortex; Cb, cerebellum; dlPFC, dorsolateral prefrontal cortex; FC, frontal cortex; FXS, 
Fragile-X sydrome; GWAS, genome-wide association study; hESC, human embryonic stem cell; H, 
hippocampus; HD, Huntington’s disease; MB, midbrain; MD, major depression; NAc, nucleus 
accumbens; NCS, neural stem cell; OFC, orbitofrontal cortex; RS, Rett syndrome.  
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1.10 Project aims  

 Address the functional significance of genetic polymorphisms within the 

NRSF-signalling pathway in transcriptional regulation of candidate genes 

implicated in CNS dysfunction and/or as biomarkers for clinical 

predisposition to disease  

 Explore the NRSF-MIR137 pathway as a potential common mechanism 

across multiple disease states 
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Chapter 2 

 

Materials and Methods 
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2.1 Materials 

2.1.1 Commonly used Buffers and Reagents 

5X TBE Buffer: 108 g Tris Base (Sigma), 55 g Boric acid (Sigma), 5.84 g 

EDTA (Sigma) made up to 2L using d.H2O. 

LB Agar: 40 g/L in d.H2O (Fluka Analytical). LB agar was autoclaved the 

same day and stored at room temperature. 

LB Broth: 25 g/L in d.H2O (Fluka Analytical). LB broth was autoclaved 

the same day and stored at room temperature. 

 

2.1.2 Chromatin Immunoprecipitation (ChIP) buffers 

Tris-EDTA (TE) buffer: 10 mM Tris and 0.1 mM EDTA (pH 8.0) made up 

to the final volume with sterile d.H2O. Adjust pH to between 7.5 and 8.0.  

Cell lysis buffer: 10 mM Hepes (pH 7.9), 1.5 mM MgCl2, 10 mM KCl and 

0.5% NP-40 made up to the final volume with sterile d.H2O. Supplement with 10 

µl/ml of 100X PIC (protease inhibitor cocktail, Sigma) immediately before use 

and store on ice. 

Nuclear lysis buffer: 50 mM Tris-HCl (Tris adjusted to pH 8.1 with HCl), 

1% SDS and 10 mM EDTA made up to the final volume with sterile d.H2O. 

Supplement with 10 µl/ml 100X PIC immediately before use and store on ice. 

Sonication buffer: 50 mM Hepes (pH 7.5), 140 mM NaCl, 1 mM EDTA, 1 

mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate and 0.1% SDS made up 

to the final volume with sterile d.H2O. Supplement with 10 µl/ml 100X PIC 

immediately before use and store on ice. 
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ChIP dilution buffer: 16.7 mM Tris–HCl, 167 mM NaCl, 1.1% Triton X-100, 

0.01% SDS and 1.2 mM EDTA made up to the final volume with sterile d.H2O. 

Supplement with 10 µl/ml 100X PIC immediately before use and store on ice.  

Low-salt wash buffer: 20 mM Tris–HCl, 150 mM NaCl, 0.1% SDS, 1% 

Triton X-100 and 2 mM EDTA made up to the final volume with sterile d.H2O. 

High-salt wash buffer: 20 mM Tris–HCl, 500 mM NaCl, 0.1% SDS, 1% 

Triton X-100 and 2 mM EDTA made up to the final volume with sterile d.H2O. 

LiCl wash buffer: 10 mM Tris–HCl, 250 mM LiCl from a 10M stock, 1% 

Igepal, 1% sodium deoxycholate and 1 mM EDTA made up to the final volume 

with sterile d.H2O. 

Elution buffer: 50 mM Tris–HCl, 1 mM EDTA, 1% SDS and 50 mM NaHCO3 

made up to the final volume with sterile d.H2O. 

 

2.1.3 Drug Treatment Solutions 

Amphetamine (Sigma): dissolved in sterile filtered d.H2O to make a 1 mM 

stock which was diluted in complete SH-SY5Y tissue culture media to a final 

concentration of 10 μM (Jones and Kauer, 1999, Shyu et al., 2004). 

Cocaine hydrochloride (Sigma): dissolved in sterile filtered d.H2O to make 

a 1 mM stock which was diluted in complete SH-SY5Y tissue culture media to a 

final concentration of 1 μM or 10 μM (Vasiliou et al., 2012).  

Lithium chloride (Sigma): dissolved in sterile filtered d.H2O to make a 1 

M stock which was diluted in complete SH-SY5Y tissue culture media to a final 

concentration of 1 mM (Hing et al., 2012, Roberts et al., 2007). 
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Nicotine hydrogen tartrate salt (Sigma): dissolved in complete SH-SY5Y 

tissue culture media to a final concentration of 1mM (Dunckley and Lukas, 

2003, Cui et al., 2012). 

Valproic acid sodium salt (Sigma): dissolved in sterile filtered dH2O to 

make a 1 M stock which was diluted in complete SH-SY5Y tissue culture media 

to a final concentration of 5 mM (Pan et al., 2005, Zhang et al., 2003, Phiel et al., 

2001). 

5-Aza-2′-deoxycytidine (5’aza-DC, Sigma): dissolved in DMSO to make a 

10 mM stock which was diluted in complete MCF-7 tissue culture media to a 

final concentration of 1 µM and 10 µM.  

 

2.1.4 Human DNA Samples 

2.1.4.1 Breast cancer cohort 

Genomic DNA was obtained for a BRCA1/2 positive, BRCA wild-type and 

matched female control cohort from the National Genetics References 

Laboratory, St Mary’s Hospital, Manchester.  

 

2.1.4.2 Epilepsy SANAD cohort 

2.1.4.2.1 Subjects  

Genomic DNA from 84 patients recruited into the SANAD (Standard and 

New Antiepileptic Drug) trials (Marson et al., 2007a, Marson et al., 2007b) that 

were included in a subgroup analysis of cognitive function (Taylor and Baker, 

2010, Taylor et al., 2010) were kindly provided by our collaborator Dr. Graeme 

Sills, University of Liverpool. A comprehensive description of the patient 

population is provided elsewhere (Taylor and Baker, 2010, Taylor et al., 2010, 
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Marson et al., 2007a, Marson et al., 2007b). All subjects were of self-reported 

Caucasian ancestry and were neurologically normal, MRI negative and had not 

previously been treated with any antiepileptic drug (AED). DNA collection was 

approved by the North-West Multicentre Research Ethics Committee in August 

2002 (ref: MREC 02/8/45) and all patients provided written informed consent 

to the use of their DNA and relevant clinical information in this analysis. 

 

2.1.4.2.2 Cognitive assessment data 

Patients recruited into the SANAD trial were assessed for cognitive 

function at baseline and during follow-up studies using a neuropsychological 

test battery designed to assess multiple cognitive domains, including memory, 

psychomotor speed, information processing, mental flexibility and mood. The 

test battery methods are described in detail elsewhere (Taylor et al., 2010). 

Only those aspects of the battery that had previously been shown to differ 

significantly between epilepsy patients and healthy controls were employed in 

the genetic association analysis (Chapter 3). Cognitive tests used for cross-

sectional and longitudinal analyses are listed in Table 3.1. All 84 subjects 

contributed to a cross-sectional analysis of genetic influences on baseline 

cognitive function. The 70 patients who also had a 12-month 

neuropsychological assessment were additionally included in a longitudinal 

analysis, investigating the influence of genetic variants on the change in 

cognitive function from baseline (see section 2.2.10.4).  
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2.1.4.3 HapMap CEU cohort 

Genomic DNA from 89 Utah residents with Northern and Western 

European ancestry from the commercially available CEPH (Centre de'Etude du 

Polymorphism Humain) trio collection of the HapMap Project were kindly 

provided by our collaborator Dr. Gerome Breen, Institute of Psychiatry, King’s 

College London. A description of the study cohort is available at 

(https://catalog. coriell.org/). 

 

2.1.4.4 Schizophrenia cohort  

Genomic DNA samples from 823 patients with schizophrenia (mean age 

37.66 years, range 18-71) and 762 healthy controls (mean age 46.27, range 19-

72) were kindly provided by our collaborator Prof. Dan Rujescu, Department of 

Psychiatry, University of Halle-Wittenberg. Subjects were all of German or 

central European descent and provided written informed consent. 

Schizophrenic patients were selected based on diagnosis under the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV) and International 

Classification of Disease-10 (ICD-10). Detailed medical and psychiatric histories 

were collected for each patient, including the Structured Clinical Interview for 

DSM-IV (SCID), to evaluate lifetime Axis I and II diagnoses. Unrelated healthy 

controls were selected at random from the general population of Munich, 

Germany. To exclude any healthy volunteers with neuropsychiatric disorders, 

both the subjects and their first-degree relatives completed an initial screening 

process followed by detailed medical and psychiatric history assessment using a 

semi-structured interview. Participants that did not meet the exclusion criteria 

were invited to a comprehensive interview including the SCID I and SCID II to 
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validate the absence of any lifetime psychotic disorder. All participants 

provided written informed consent following a detailed and extensive 

description of the study, which was approved by the local ethics committee of 

Ludwig Maximilians University, Munich, Germany and carried out in accordance 

to the ethical standards outlined in the Declarations of Helsinki.  

 

2.1.5 Human cell lines 

2.1.5.1 SH-SY5Y 

Human-derived neuroblastoma cell-line obtained from the American 

Type Culture Collection (ATCC). 

2.1.5.2 MCF-7  

Human-derived breast adenocarcinoma cell line kindly provided by Prof. 

Rudland and Prof. Palmieri, The Royal Liverpool University Hospital.  

 

2.1.6 Cell culture media 

2.1.6.1 Complete media for SH-SY5Y cells  

Earle's modified Eagle's medium (Sigma) and HAM's F12 (Sigma) at a 

ratio of 1:1, supplemented with 10% foetal bovine serum (Sigma), 1% 200 mM 

L-glutamine, 1% 100 mM sodium pyruvate and 100 U/ml penicillin/ 100 ug/ml 

streptomycin. 

 

2.1.6.2 Low serum media for SH-SY5Y cells 

Has the same composition as complete SH-SY5Y media (section 2.1.6.1) 

but with 2% foetal bovine serum (Sigma). 
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2.1.6.3 Complete media for MCF-7 cells 

Dulbecco’s Modified Eagles medium with 4500 mg glucose/L (Sigma), 

supplemented with 10% foetal bovine serum (Sigma), 100 U/ml penicillin and 

100 µg/ml streptomycin.  

 

2.1.6.4 Freezing media 

90% foetal bovine serum (Sigma), 10% DMSO (Sigma). 

 

2.1.7 Rat DNA Samples 

Left and right cortex, hippocampi and amygdala from adult male Sprague 

Dawley rats (Slaccas Laboratory Animal co., LTD, Shanghai) were generously 

provided by our collaborator Dr. Minyan Wang, Xi'an Jiaotong-Liverpool 

University (XJTLU). The average weight of the rats was 327 g [range 295 – 360 

g]. Tissues were stored at -80°C prior to processing for RNA and DNA 

extractions (section 2.2.5.2). The treatment groups were untreated (n=3), sham 

control (n=3) and CSD (cortical spreading depression) (n=3). Methods used by 

our collaborators for eliciting CSD are outlined in Appendix 1. 
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2.1.8 PCR primers 

Table 2.1. PCR primers used for gene expression profiling, genotyping and ChIP 

Gene Forward (5’- 3’) Reverse (5’- 3’) Species Application Product 
size (bp) 

Position Annealing 
temp 

ACTB 
AGGCTGTGCTATCCCTGTACGC ATGGGCACAGTGTGGGTGAC Human RT-PCR 85 - 60 
CTGTCCACCTTCCAGCAGAT CGCAGCTCAGTAACAGTCCG Rat RT-PCR 105 - 60 

AK311400  ACTCTCTTCGGTGACGGGTA TCCACTCTGGGTCATCCTTC Human RT-PCR 274, 451 - 63 
AK311400  ACTCTCTTCGGTGACGGGTA ACTCTTGCTAGGTCCGCTTG Rat RT-PCR 232, 409   
BDNF I ATCGATGCCAGTTGCTTTGT AGCCTTCATGCAACCAAAGT Human RT-PCR 307 - 60 
BDNF IIb 

GTTGGCTTCCTAGCGGTGTA ATTCACGCTCTCCAGAGTCC Human RT-PCR 
211 

- 60 
BDNF IIc 294 
BDNF III TTAGAGGGTTCCCGCTTTCT TTCGAAAGTGTCAGCCAATG Human RT-PCR 301 - 60 
BDNF IV TTTGCTGCAGAACAGAAGGA CACCTTGTCCTCGGATGTTT Human RT-PCR 284 - 60 
BDNF Va 

GTGCGATTTCATTGTGTGCT TTTCTGGTCCTCATCCAACA Human RT-PCR 

298 

- 60 
BDNF Vb 308 
BDNF V-VIII 591 
BDNF V-VIII-VIIIh 708 
BDNF VIa 

GGGGGCTTTAATGAGACACC ATTCACGCTCTCCAGAGTCC Human RT-PCR 
291 

- 60 BDNF VIb 309 
BDNF VIb-IXbd 416 
BDNF VII AAGTCCGAAGCCAATGTAGC ATTCACGCTCTCCAGAGTCC Human RT-PCR 403 - 60 
BDNF IXabcd 

TTTTGTGTTTCTCGTGACAGC CCGAACTTTCTGGTCCTCAT Human RT-PCR 
616 

- 60 
BDNF IXabd 382 
CACNA1C TCGAGTCCAGTGAGAAACTC GGTGACCTCGATGAACTTG Human/Rat RT-PCR 248 - 60 
Calca_CGRP AACCTTGGAAAGCAGCCCAGGCATG GTGGGCACAAAGTTGTCCTTCACCA Rat RT-PCR 246 - 63 
Calca_CT CCCTTTCCTGGTTGTCAGCATCTT AGCATGCAGGTACTCAGATTCCCA Rat RT-PCR 258 - 63 
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c-fos AGATACGCTCCAAGCGGAGA CGGTGGGCTGCCAAAATAAA Rat RT-PCR 117 - 60 
c-jun AGCCAAGAACTCGGACCTTC TCGGTGTAGTGGTGATGTGC Rat RT-PCR 116 - 60 
GAD1 TCTCCTGGGGGAGCCATATC TGAAGAGGACCAGTTTGGGC Rat RT-PCR 112 - 60 
MIR137HG CAGAGGAAAGCACTGGGAGA CACCCAAGAATACCCGTCAC Human/Rat RT-PCR 291 - 63 
MIR137-MIR2682 GTGACGGGTATTCTTGGGTG AGACTCATCCCAAAGGCAGA Rat RT-PCR 187 - 60 

NRSF 
TATGCGTACTCATTCAGGTGAG TTTGAAGTTGCTTCTATCTGCTGT Human RT-PCR 166, 216 - 60 
AGCGAATACCACTGGCGGAAACA AATTAAGAGGTTTAGGCCCGTTG Rat RT-PCR 313 - 60 

RELN CGTCCTAGTAAGCACTCGCA TATCGCCTAAGCGACCTTCG Rat RT-PCR 102 - 60 
REST4 AGCGAATACCACTGGCGGAAACA TCACCCAACTAGATCACACT Rat RT-PCR 235 - 63 
sNRSF GGATACCATTTGGTAATATTTAC TGAACCTGTCTTGCATGGCG Human RT-PCR 124 - 57 
TCF4 CAAAGCCGAATTGAAGATCG AAGAGAATGGCTGCCTCTCA Human/Rat RT-PCR 255/253 - 60 

MIR137 VNTR CACCCAAGAATACCCGTCAC TGGGAGAGCACCAGGTAAAC Human ChIP/ 399 ±15 -263 to +136 60 
MIR137 VNTR CACCCAAGAATACCCGTCAC TGGGTGATCACCAGGTACAC Rat Genotyping 395 - 60 
pBDNF I  CCCATTAGAGCAAACGCAGT CGCTgTTTACGTGACCGACT Human ChIP 354 -412 to -58 60 
pBDNF II  GAGATTTTTAAGCCTTTTCCTC CTTGCCAAGAGTCTATTCC Human ChIP 323 +22 to +345 60 
pBDNF IV  GGGCTGGAAGTGAAAACATC ATTGCATGGCGGAGGTAATA Human ChIP 334 -193 to +141 60 
pBDNF VI  ATCGAAGCTCAACCGAAGAG GTCACATCGTGGTTCCGATT Human ChIP 301 -16 to +284 60 
pBDNF IX  ATGGCCATTGCATGTATGTG CTCTTCCTGTTTGCCAGAGG Human ChIP 283 -432 to -149 60 
pMIR137HG  TCAGAGAGAGGTGCTGTGAA CGCCTGCCACTATACACAAA Human/Rat ChIP 323/324 -325 to -3 60 
MIR137HG_CpG CTAAGTGGGCCTGAGCTTTG CGGAGCTGCTTAAGACCTGA Human MeDIP 314 +4,140 to +4,453 60 

MIR137HG_NRSF BSI ACCTACCCAATGTTCCACCA CGACAGCTTAAGGAGGCTTG  Human ChIP 213 +1,116 to +1,328 60 

 
Note: PCR primers for RT-PCR cross exon-intron boundaries for each target gene. Position for ChIP primers is relative to the first base of the first exon, labelled +1, 
of the corresponding gene.  
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2.1.9 DNA constructs and commercial vectors  

Table 2.2. Reporter gene and expression constructs generated for use in in vitro luciferase and over-expression assays 
 

Name Vector Orientation RE sites of 
insertion 

DNA insert and source Primers for amplification (5’ – 3’) Application 

Imir137(4/12)F pGL3B Forward XhoI, MluI Internal MIR137 (Imir137) promoter 
VNTR, 4- and 12-copy alleles cloned 
from ALS cohort, plate 1, samples G7 
and A7, respectively.  

F: ATACCTCGAGACCCAAGAATACCCGTCA 
R: ATACACGCGTTGGGAGAGCACCAGGTAAA 

Luciferase 

Imir137(4/12)R pGL3B Reverse XhoI, MluI F: ATACACGCGTACCCAAGAATACCCGTCA 
R: ATACCTCGAGAGCAGCAAGAGTTCTGGT 

Luciferase 

Imir137(4)+C pGL3B Forward XhoI, MluI Imir137 promoter VNTR including 
rs2660304 SNP. Cloned from 
HapMap DNA, sample ID NA12057. 

F: ATACCTCGAGACCCAAGAATACCCGTCA 
R: ATACACGCGTTCATACCACCTAGAGTGGAC 

Luciferase 

Imir137(4)+A pGL3B Forward XhoI, MluI Imir137 promoter VNTR including 
rs2660304 SNP. Cloned from 
HapMap DNA, sample ID NA06993. 

F: ATACCTCGAGACCCAAGAATACCCGTCA 
R: ATACACGCGTTCATACCACCTAGAGTGGAC 

Luciferase 

VNTRmir137(4/12)F pGL3P Forward XhoI, MluI MIR137 VNTR alone, 4- and 12-copy 
alleles cloned from ALS cohort, plate 
1, samples G7 and A7, respectively. 

F: ATACCTCGAGACCCAAGAATACCCGTCA 
R: ATACACGCGTAGCAGCAAGAGTTCTGGT 

Luciferase 

VNTRmir137(4/12)R pGL3P Reverse XhoI, MluI F: ATACACGCGTACCCAAGAATACCCGTCA 
R: ATACCTCGAGAGCAGCAAGAGTTCTGGT 

Luciferase 

RE-EX1 pcDNA6 Forward 
- 

Construct kindly provided by Prof. G. 
Mandel, School of Medicine, OHSU. - 

mRNA over-
expression 

sNRSF pcDNA3.1 Forward HindIII, 
BamHI 

cDNA amplified from human SH-SY5Y 
neuroblastoma cell line. 

F: CTAAAAGCTTGTTATGGCCACCCAGGTA  
R: CTAAGGATCCTCACACTCTAGTAAATATTACC 

mRNA over-
expression 

Note: Underlined sequences indicate restriction (RE) sites for direct cloning into the specified vector. Highlighted text in the sNRSF primer set represents the Kozak 
consensus sequence ([G/A]NNATGG) which is required for efficient initiation of translation and the translational stop codon. 
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2.1.10 ChIP grade antibodies  

Table 2.3. Antibodies used for ChIP in human SH-SY5Y and MCF-7 cell lines and rat brain tissue   

Antibody Host Species Species 
Reactivity 

Immunogen Company and Catalogue 
Number 

Amount 
per ChIP  

Anti-EZH2 Mouse 
(Monoclonal) 

Human, 
Mouse, Rat 

Recombinant protein corresponding to amino acids 353-
451 of human EZH2. 

Active Motif, 39875 3.0 µg  

Anti-H3 Rabbit 
(Polyclonal) 

Human, 
mouse, rat 

Synthetic peptide corresponding to the carboxy-terminal 
of human Histone H3. 

Abcam, 1791 2.5 µg 

Anti-H3K9me3 Rabbit 
(Polyclonal) 

Human, 
mouse, rat 

Synthetic peptide derived from within residues 1-100 of 
Human H3, trimethylated at lysine 9. 

Abcam, 8898 3.5 µg 

Anti-H3K4me2 Rabbit 
(Monoclonal) 

Human, 
mouse, rat 

Synthetic peptide corresponding to residues surrounding 
Lys4 of human Histone H3. 

Abcam, 32356 3.0 µg 

Anti-MeCP2 - Human Kind gift from Dr Cardoso, Darmstadt. - 3.0 µg 

Anti-RNA Pol II CTD 
phospho Ser5 

Rat 
(Monoclonal) 

Human Synthetic peptide containing the RNA pol II C-terminal 
domain (CTD) sequence phosphorylated at serine 5. 

Active Motif, 61085 5.0 µg 

Anti-REST Rabbit 
(Polyclonal) 

Human, 
mouse, rat 

GST fusion protein corresponding to residues 801-1097 of 
full-length human REST/NRSF. 

Upstate, Millipore, 07-579 3.0 µg 

Anti-NRSF              
(H-290-X)  

Rabbit 
(Polyclonal) 

Human, 
mouse, rat 

Epitope corresponding to amino acids 1-290 of the human 
REST/NRSF amino-terminal. Identifies all known 
isoforms of the NRSF protein.  

Santa Cruz Biotechnology, 
sc-25398-X 

5.0 µg 

Normal rabbit IgG Rabbit 
(Polyclonal) 

- Unconjugated antibody not directed against any known 
antigen. Used as a non-specific IgG control in ChIP assays. 

NEB, 2729 check 5.0 µg 

Note: Amount per ChIP refers to the concentration of antibody used per ChIP assay with 5 µg of sheared chromatin. 
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2.1.11 StellARrayTM Mood disorder genes  

Table 2.4. Gene name and description for the Human Mood Disorder 96-well qPCR StellARray™ 
 

Gene Name Entrez Gene Description 

ACE 1636 Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 
ADCYAP1 116 Adenylate cyclase activating polypeptide 1 (pituitary) 
ADRBK2 157 Adrenergic, beta, receptor kinase 2 
ARNTL 406 Aryl hydrocarbon receptor nuclear translocator-like 
ATP2A2 488 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 
BCR 613 Breakpoint cluster region 
BDNF 627 Brain-derived neurotrophic factor 
CASP8 841 Caspase 8, apoptosis-related cysteine peptidase 
CCND2 894 Cyclin D2 
CHRNA7 1139 Cholinergic receptor, nicotinic, alpha 7 
CIT 11113 Citron rho-interacting serine/threonine kinase 
CLOCK 9575 Clock circadian regulator 
COMT 1312 Catechol-O-methyltransferase 
CREB1 1385 CAMP responsive element binding protein 1 
CRH 1392 Corticotropin releasing hormone 
CRHBP 1393 Corticotropin releasing hormone binding protein 
DAO 1610 D-amino-acid oxidase 
DISC1 27185 Disrupted in schizophrenia 1 
DLX1 1745 Distal-less homeobox 1 
DRD1 1812 Dopamine receptor D1 
DRD3 1814 Dopamine receptor D3 
DRD4 1815 Dopamine receptor D4 
DTNBP1 84062 Dystrobrevin binding protein 1 
ERBB3 2065 V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 
FAT1 2195 FAT atypical cadherin 1 
FKBP5 2289 FK506 binding protein 5 
FOS 2353 FBJ murine osteosarcoma viral oncogene homolog 
GABRA5 2558 Gamma-aminobutyric acid (GABA) A receptor, alpha 5 
GAD1 2571 Glutamate decarboxylase 1 (brain, 67kDa) 
GCH1 2643 GTP cyclohydrolase 1 
GPR50 9248 G protein-coupled receptor 50 
GRIK3 2899 Glutamate receptor, ionotropic, kainate 3 
GRIK4 2900 Glutamate receptor, ionotropic, kainate 4 
GRIN2B 2904 Glutamate receptor, ionotropic, N-methyl D-aspartate 2B 
GRM3 2913 Glutamate receptor, metabotropic 3 
GRM4 2914 Glutamate receptor, metabotropic 4 
GSK3B 2932 Glycogen synthase kinase 3 beta 
Hs18s - Human 18S ribosomal RNA 
HS Genomic - Human genomic DNA control 
HSP90B1 7184 Heat shock protein 90kDa beta (Grp94), member 1 
HSPA5 3309 Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) 
HTR1B 3351 5-hydroxytryptamine (serotonin) receptor 1B 
HTR2A 3356 5-hydroxytryptamine (serotonin) receptor 2A 
IL1RN 3557 Interleukin 1 receptor antagonist 
IMPA1 3612 Inositol(myo)-1(or 4)-monophosphatase 1 
IMPA2 3613 Inositol(myo)-1(or 4)-monophosphatase 2 
INPP1 3628 Inositol polyphosphate-1-phosphatase 
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ISYNA1 51477 Myo-inositol 1-phosphate synthase A1 
JUN 3725 Jun oncogene 
KCNN3 3782 Potassium intermediate/small conductance calcium-activated channel, 

subfamily N, member 3 
MAG 27307 Malignancy-associated gene 
MAL 4118 Mal, T-cell differentiation protein 
MAOA 4128 Monoamine oxidase A 
MLC1 23209 Megalencephalic leukoencephalopathy with subcortical cysts 1 
MOBP 4336 Myelin-associated oligodendrocyte basic protein 
MOG 4340 Myelin oligodendrocyte glycoprotein 
MTHFR 4524 5,10-methylenetetrahydrofolate reductase (NADPH) 
NAPG 8774 N-ethylmaleimide-sensitive factor attachment protein, gamma 
NCAM1 4684 Neural cell adhesion molecule 1 
ND4 4538 Mitochondrially encoded NADH dehydrogenase 4 
NDUFV1 4723 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa 
NDUFV2 4729 NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa 
NOS1AP 9722 Nitric oxide synthase 1 (neuronal) adaptor protein 
NR1D1 9572 Nuclear receptor subfamily 1, group D, member 1 
NR3C1 2908 Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 
NRG1 3084 Neuregulin 1 
NTRK2 4915 Neurotrophic tyrosine kinase, receptor, type 2 
OLIG2 10215 Oligodendrocyte lineage transcription factor 2 
P2RX7 5027 Purinergic receptor P2X, ligand-gated ion channel, 7 
PAFAH1B1 5048 Platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa 
PAFAH1B3 5050 Platelet-activating factor acetylhydrolase, isoform Ib, gamma subunit 29kDa 
PCNT 5116 Pericentrin 
PDLIM5 10611 PDZ and LIM domain 5 
PER3 8863 Period circadian clock 3 
PIP4K2A 5305 Phosphatidylinositol-5-phosphate 4-kinase, type II, alpha 
PLA2G1B 5319 Phospholipase A2, group IB (pancreas) 
PLA2G4A 5321 Phospholipase A2, group IVA (cytosolic, calcium-dependent) 
PLCG1 5335 Phospholipase C, gamma 1 
PLP1 5354 Proteolipid protein 1 
POLG 5428 Polymerase (DNA directed), gamma 
PTGS2 5743 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 

cyclooxygenase) 
RELN 5649 Reelin 
RFX4 5992 Regulatory factor X, 4 (influences HLA class II expression) 
RGS4 5999 Regulator of G-protein signaling 4 
SLC12A6 9990 Solute carrier family 12 (potassium/chloride transporters), member 6 
SLC6A2 6530 Solute carrier family 6 (neurotransmitter transporter, noradrenalin), 

member 2 
SLC6A3 6531 Solute carrier family 6 (neurotransmitter transporter, dopamine), member 

3 
SLC6A4 6532 Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 
SULT1A1 6817 Sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1 
SYNGR1 9145 Synaptogyrin 1 
TAAR6 319100 Trace amine associated receptor 6 
TF 7018 Transferrin 
TIMELESS 8914 Timeless circadian clock 
TPH1 7166 Tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) 
TPH2 121278 Tryptophan hydroxylase 2 
XBP1 7494 X-box binding protein 1 

 



 

80 
 

2.2 Methods 

2.2.1 Designing PCR primers 

Polymerase chain reaction (PCR) primers were designed using the online 

primer designer software Primer3 (http://biotools.umassmed.edu/bioapps/ 

primer3_www.cgi) which generates a list of suitable PCR primers for 

amplification of the sequence of interest based on appropriate melting 

temperatures, GC% content and potential dimerisation and hairpin formation. 

In general, primers were designed to be 18-25 nucleotides in length, have a 

melting temperature of 50-65°C and a GC-content between 40-60%. Primer 

specificity was determined using the In-Silico PCR and Pick Primers tools 

available from the UCSC Genome Browser (http://genome.ucsc.edu/index.html) 

and National Center for Biotechnology Information (NCBI) (http://www.ncbi. 

nlm.nih.gov/tools/primer-blast/). Primers were purchased from Eurofins MWG 

Operon and are listed in Table 2.1. 

 

2.2.2 General Cloning Methods  

2.2.2.1 PCR primer design for direct cloning into commercial vectors 

Primers were designed as outlined in section 2.2.1 with a minimum 

length of 15 bp. Appropriate restriction sites (present in the multiple cloning 

site of the chosen vector but absent in the target sequence) were added to the 5’ 

end of the forward and reverse primers so that they are incorporated at the 

ends of the target DNA sequence following PCR amplification. To ensure 

efficient DNA cleavage by the restriction enzymes, a random sequence of 6 bp 

was also included 5´ of the restriction sites. Primers used for direct cloning are 

listed in Table 2.2 and PCR methods outlined below in section 2.2.2.2.      

http://biotools.umassmed.edu/bioapps/%20primer3_www.cgi�
http://biotools.umassmed.edu/bioapps/%20primer3_www.cgi�
http://genome.ucsc.edu/index.html�
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2.2.2.2 PCR using a proof-reading polymerase 

Phusion High-Fidelity DNA Polymerase (NEB) was used in PCR for the 

amplification of DNA targets. The Phusion DNA Polymerase master mix is 

outlined below: 

 

Component                              Volume 
(n=1) 

Final 
Concentration 

5X Phusion HF buffer                             4 µl 1X 
PCR nucleotide mix (10 mM of each dNTP)                          1 µl       200 µM       
Forward primer (10 µM)                                  1 µl 0.5 µM       
Reverse primer (10 µM)                             1 µl 0.5 µM       
Phusion DNA polymerase (2 U/µl)                      0.2 µl                                 0.4 U  
Nuclease free water                                            X µl - 
DNA template                                                  X µl - 
Final volume                                                     20 µl - 
     

PCR reactions were performed in a QB-96 (Quanta Biotech) or peqSTAR 2X 

(peqlab) thermocycler. The amount of DNA template used varied between 

primer sets depending on the abundance of the target for amplification. 

Thermal cycling conditions were as follows: initial denature at 98°C for 30 

seconds, followed by 25 cycles of denature, annealing and extension at 98°C for 

10 seconds, X°C for 30 seconds and 72 °C for 30 seconds, respectively, with a 

final extension cycle at 72 °C for 10 minutes. The annealing temperature of each 

primer set was optimised using a gradient PCR and are listed in Table 2.1 along 

with primer sequences and expected product sizes. PCR products were 

analysed by agarose gel electrophoresis, see section 2.2.2.3.   
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2.2.2.3 Analysis of DNA using agarose gel electrophoresis  

DNA fragments from PCR reactions or restriction digests were analysed 

by gel electrophoresis on 1-2.0% agarose gels supplemented with GelRed 

(1:10,000 dilution) (Cambridge Bioscience) or 0.5 µl per 10 ml of ethidium 

bromide (Sigma 10 mg/ml) and measured against a 100 bp or 1 Kb DNA ladder 

(Promega). The voltage (standard is 5 V/cm) and time for which the gel was run 

was dependant on the percentage of the gel and fragment size. The DNA was 

visualised using a UV transillumintor (BioDoc-it Imaging System).   

 

2.2.2.4 Recovery of DNA from agarose-gels 

Following separation through gel-electrophoresis, DNA fragments of the 

expected size were extracted from the agarose gel and column-purified using 

the QIAquick Gel Extraction Kit (QIAGEN), following manufacturer’s instruction. 

The purified DNA was eluted in 30 µl Elution Buffer. 

   

2.2.2.5 Restriction digest and DNA purification 

Restriction enzyme digests were used either to create specific nucleic 

acid overhangs for ligation or as a diagnosis tool for determining the presence 

and/or orientation of inserts. Restriction enzymes were purchased from 

Promega and digests performed using the following reaction components:  

 

Nuclease free water                         X µl 
10X Buffer                                          2 µl 
Acetylated BSA (10 µg/µl)              0.2 µl 
DNA (1 µg)                                      X µl 
Restriction Enzyme (10 U/µl)         0.5 µl 
Final volume                                  20 µl 



 

83 
 

Recommended buffers for optimum enzyme activity were used, digestions were 

incubated at the appropriate temperature for the enzyme activity for 1-4 hours 

and fragments run on agarose gels to visualise their size (section 2.2.2.3). 

 

2.2.2.6 Ligation  

Purified DNA fragments were ligated into the appropriate vectors at an 

insert : vector molar ratio of 3:1 using the following ligation calculation: 

 

ng vector x insert size kb x molar ratio of insert = ng insert 
          vector size kb                                           vector 

 

For the ligation reaction, 1 μl (100 ng) of vector and the appropriate volume of 

insert were added to 1 μl Ligase 10X Buffer (Promega) and 1 μl T4 DNA Ligase 

(1-3 U/μl) (Promega) and made up to a final volume of 10 μl with nuclease free 

water. The reaction was incubated at room temperature for 4 hours or at 16°C 

overnight. 

 

2.2.2.7 Transformation of chemically competent E. Coli cells  

Following ligation, the resulting plasmids were transformed into 

chemically competent E. Coli Sub-cloning Efficiency™ DH5-α cells (Invitrogen), 

following manufacturer’s instruction. Briefly, 5 μl of the ligation reaction or 10 

ng plasmid DNA was added to 50 μl of competent DH5-α cells and incubated on 

ice for 30 minutes. The cells were then subjected to ‘heat-shock’ for 20 seconds 

at 42°C in a water bath followed by 2 minutes incubation on ice. Next, 950 μl of 

pre-warmed LB broth was added to the cells and the culture incubated with 

constant shaking (225 rpm) at 37°C for 1 hour. Following this, 200 μl of the 
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culture was spread evenly onto LB agar plates supplemented with 100 μg/ml 

ampicillin and incubated overnight at 37°C. 

 

2.2.2.8 Isolation of plasmid DNA from bacterial cultures  

2.2.2.8.1 Mini-preparation of plasmid DNA 

In order to test plasmid DNA for inserts following molecular cloning, a 

small scale preparation of DNA (up to 20 μg) was undertaken. Individual 

colonies grown on LB agar plates (section 2.2.2.7) were transferred to 5 ml LB 

broth supplemented with 100 μg/ml ampicillin and cultured overnight at 37°C 

on a shaker at 225 rpm. DNA was isolated from the resulting bacterial culture 

using the QIAprep Spin Miniprep Kit (QIAGEN), according to manufacturer’s 

guidelines. Purified plasmid DNA was eluted in 50 μl nuclease-free water into 

fresh 1.5 ml microcentrifuge tubes and subject to restriction enzyme digestion 

to check for the correct size and orientation of the insert (section 2.2.2.5). 

 

2.2.2.8.2 Maxi-preparation of plasmid DNA  

A Plasmid Maxi Kit (Qiagen) was used to purify high yields of plasmid 

DNA from transformed bacteria of greater purity than that generated from 

mini-preparations for use in downstream applications such as in vitro reporter 

gene assays. A 200 µl aliquot of the 5 ml starter culture from section 2.2.2.8.1 or 

starter culture grown from a small scraping of a glycerol stock (section 2.2.2.10) 

was grown overnight at 37°C with shaking (225 rpm) in 100 ml of LB broth 

supplemented with the appropriate antibiotic to generate a sufficient quantity 

of bacteria for extraction of the plasmid DNA. DNA purification was carried out 

according to manufacturer’s instruction for high-copy plasmids. The resulting 



 

85 
 

DNA pellet was resuspended in 200-500 µl of EB buffer and quantified using a 

Nanodrop 8000 and then stored at -80oC for long-term storage or at -20oC for 

working stocks. 

  

2.2.2.9 Sequencing 

Plasmid DNA with cloned inserts and PCR products were sequenced 

externally by Dundee DNA Sequencing and Service or Source Bioscience Life 

Sciences. The samples and primers were supplied as required by the companies. 

 

2.2.2.10 Glycerol stocks 

Glycerol stocks of transformed bacteria were made for long term 

storage. 1.4 ml of the overnight culture was transferred to a microcentrifuge 

tube and pelleted by centrifugation at 8,000 rpm for 3 minutes at room 

temperature. The supernatant was removed and the pellet resuspended in 0.5 

ml of sterile 15% glycerol (v/v in LB broth) and transferred into a cryovial. This 

was then immediately frozen at -80oC. 

 

2.2.2.11 Generation of MIR137 reporter gene constructs 

2.2.2.11.1 pGL3-Basic (pGL3B) constructs 

MIR137 Internal promoter fragments containing either the 4-copy or 12-

copy variant of the MIR137 variable number tandem repeat (VNTR) were 

amplified from human DNA (ALS cohort, plate 1, wells G7 and A7, respectively) 

and ligated into the pGL3B vector, which lacks a minimal promoter sequence, at 

the MluI and XhoI restriction sites. Specifically we included nucleotides -361/ -

481 to +38 numbered from the first base of the precursor miRNA sequence as 
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+1. The difference in 5’ end of these fragments reflected the two distinct VNTRs 

and were termed Imir137(4) and Imir137(12), respectively. 

The Imir137(4) fragment containing alternative alleles of the SNP 

rs2660304 that is present within the second exon of the non-protein coding 

gene MIR137HG (AK094607) and in linkage disequilibrium with the 

schizophrenia associated GWAS SNP rs1625579 was amplified using primers 

listed in Table 2.2 and human DNA samples from the HapMap CEU cohort 

(Imir137(4)+C, sample ID NA12057 and Imir137(4)+A, sample ID NA06993) 

using methods described above for the Imir137 reporter gene constructs. 

 

2.2.2.11.2 pGL3-Promoter (PGl3P) constructs 

The MIR137 VNTR alone was also cloned into reporter gene constructs, 

either −86 or −206 to +38 bp (reflecting the 4 - and 12-copy repeats) into the 

pGL3-Promoter (pGL3P) vector upstream of the minimal SV40 promoter in 

forward and reverse orientations. These were termed VNTRmir137(4)F or R 

and VNTRmir137(12)F or R, respectively, to indicate both copy number and 

orientation of fragment. Details of primers and restriction sites are listed in 

Table 2.2. 

 

2.2.2.12 Generation of sNRSF gene expression construct 

The truncated human NRSF variant, sNRSF, was amplified from human 

SH-SY5Y cDNA and directly cloned into the pcDNA3.1 expression vector 

(Invitrogen) using the primers and restriction sites listed in Table 2.2. For 

correct initiation of sNRSF translation within the expression construct, the 

forwards primer was designed to generate an insert conferring a Kozak 
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consensus sequence ([G/A]NNATGG)  containing an ATG initiation codon and 

the reverse primer designed to include the sNRSF stop codon.  

 

2.2.3 Cell Culture 

2.2.3.1 Culturing of SH-SY5Y and MCF-7 cells  

Human SH-SY5Y neuroblastoma and human MCF-7 breast 

adenocarcinoma cells were maintained in culture media outlined in section 2.1.6 

at 37°C, 5% CO2, in T175 tissue culture flasks until 70-80% confluent. To 

passage cells, media was removed and the cells washed down with 1X sterile 

PBS (Sigma) pre-warmed at 37°C. Following removal of the PBS, 5 ml of pre-

warmed 1X trypsin (Sigma) was washed over the cells and then removed, and 

the cells incubated at 37°C for approximately 3 minutes or until the cells began 

to detached from the bottom of the flask. To neutralise the trypsin, cells were 

washed down in 10 ml of pre-warmed complete tissue culture media and mixed 

into a single cell suspension through pipetting. Between 1-2 ml (approximately 

1-2.4 million cells depending on cell type) of the cell suspension was then 

transferred into a new T175 flask with 40 ml of the appropriate media for that 

cell line. Cell lines were tested for mycoplasm infection every six months using 

MycoAlert Mycoplasma Detection kit (Lonza). 

 

2.2.3.2 Cell counts with a haemocytometer 

To determine the number of cells per ml of media cell counts were 

performed using a haemocytometer. Cells were passaged as described in section 

2.2.3.1 up to the cells being washed down with 10 ml of media. Prior to the 

coverslip being placed onto the counting surface of the haemocytometer both 
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parts were washed with 70% ethanol. On the centre of the counting surface of 

the haemocytometer there are 25 squares (5x5) bounded by three parallel lines 

each containing 25 smaller squares (5x5). To perform the cell count, 20 µl of the 

cell suspension was introduced under the coverslip and the counting surface 

visualised under a light microscope on the 10X objective. The number of cells 

within the 25 larger squares bounded by three parallel lines were counted 

including cells touching the top or left hand borders of the 25 squares and 

excluding those in contact with the bottom or right hand border. This area 

corresponds to 0.1 mm3 therefore the number of cells was multiplied by 1x104 

(10,000) to give the number of cells in 1 cm3 which is the equivalent of 1 ml. 

This gave the number of cells per ml of media used for calculating the density at 

which the cells were seeded.  

 

2.2.3.3 Freezing cells for storage in liquid nitrogen 

 For long term storage, cell lines were frozen in freezing media (section 

2.1.6.4) in liquid nitrogen. The cells were grown in T175 flasks until 70-80% 

confluent and then passaged as described in section 2.2.3.1 but the cells were 

washed from the surface of the flask using 10 ml of freezing media and the cell 

suspension split across cryovials with 1.8 ml in each. The cryovials were 

immediately placed into a Mr Frosty with isopropanol at -800C for 24 hours and 

then transferred to liquid nitrogen. 
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2.2.3.4 Drug treatments 

Drug treatments were performed using concentrations previously 

optimised in our lab or reported in the literature to be effective in cell culture. 

These are detailed in section 2.1.3. Cells were serum-starved 24 hours prior to 

drug treatments to promote cell-cycle synchronisation (Zetterberg and Skold, 

1969, Kramer et al., 2010). This involved culturing the cells in low serum media 

outlined in section 2.1.6.2. Drugs were diluted in appropriate volumes of 

complete cell culture media and added to the cells for the specified time. For 72 

hour treatment of MCF-7 cells with the 5’aza-DC DNA demethylation agent, 

fresh media alone or media containing the drug or drug vehicle (DMSO) was 

added to the cells 24 and 48 hours following the initial treatment. For each drug 

treatment, n=4. Basal (untreated) and drug vehicle control cells were also 

included. For mRNA expression profiling (section 2.2.5), RNA extractions were 

performed immediately after the drug treatment. For luciferase and over-

expression assays, drug treatments were performed 4 hours post-transfection 

(section 2.2.3.5). 

 

2.2.3.5 Delivery of plasmid DNA to cultured cells 

2.2.3.5.1 Single transfection assays 

For NRSF over-expression assays, SH-SY5Y cells were seeded into 6-well 

plates at approximately 400,000 cells per well and transfected with either 4 μg 

of RE-EX1 or pcDNA3.1_sNRSF using the TurboFect (Thermo Scientific) 

transfection reagent following the manufacturer’s guidelines. pcDNA3.1 alone 

was used as a negative control. Cells were incubated for 48 hours before being 

processed for RNA extraction (section 2.2.5.1). 
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2.2.3.5.2 Co-transfection assays 

For luciferase assays, SH-SY5Y cells were seeded in 24-well plates at 

approximately 100,000 cells per well and transfected with 1 μg plasmid DNA 

and 10 ng pMLuc2 (Novagen) (internal control for transfection efficiency) using 

TurboFect (Thermo Scientific). Addition of 1 μg RE-EX1 or pcDNA3.1_sNRSF 

was also included for assessment of NRSF over-expression on reporter gene 

activity; pcDNA3.1 alone was used as a negative control. Transfected cells were 

processed 48 hours post-transfection using the Dual-Luciferase Reporter Assay 

System (Promega).  

 

2.2.4 Luciferase Reporter Gene Assays  

2.2.4.1 Cellular lysis 

At 48 hours post-transfection, tissue culture media was removed from 

the cells and the cells washed with 1X PBS. For cellular lysis, 100 µl of 1X 

passive lysis buffer (PLB) was added to each well of the 24-well plate and the 

plate incubated at room temperature on a rocking platform for 15 minutes. 20 

µl of the cell lysate was then transferred to an opaque 96-well plate for analysis.  

 

2.2.4.2 Measurement of reporter gene activity 

The appropriate amount of luciferase assay reagent II (LARII) and Stop 

and Glo reagent was prepared for the number of measurements required and 

allowed to reach room temperature. The opaque 96-well plate containing the 

cell lysate was placed into a Glomax 96 Microplate Luminometer (Promega) 

which had been setup under default settings for dual-luciferase reporter gene 

assays for experiments using two-injectors. The injectors were first flushed 
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with distilled water, 70% ethanol, distilled water and air to thoroughly clean 

them and then primed with the luciferase reagents (LARII in injector 1 and Stop 

and Glo in injector 2) before the Promega dual luciferase program is run, which 

measures the bioluminescence from the reaction catalysed by the firefly and 

renilla luciferase enzymes. The LARII is added first to measure the 

bioluminescence produced by the reaction catalysed by the firefly luciferase 

protein and then the Stop and Glo quenches this reaction and is used to 

measure the bioluminescence from the reaction catalysed by the renilla 

luciferase protein.  

 

2.2.4.3 Statistical analysis 

Using the measurements recorded for the activity of the two co-

transfected reporter gene constructs, the activity of the constructs across the 

different wells can be accurately compared as the internal control reduces 

experimental variability caused by differences in transfection efficiencies. Fold 

changes in firefly luciferase activity (normalised to renilla luciferase activity) 

supported by the reporter gene constructs over the pGL3 controls were 

calculated and significance determined using one-tailed t-tests. Significance was 

scored as follows */# P<0.05, **/## P<0.01, ***/### P<0.001. For each 

transfection, a minimum of n= 4 was used. 
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2.2.5 mRNA expression analysis 

2.2.5.1 In vitro RNA extraction 

Total RNA was extracted using TRIzol reagent (Invitrogen) following 

manufacturer’s instruction. Briefly, SH-SY5Y and MCF-7 cells were plated out 

into 6-well plates at approximately 400,000 cells per well and incubated for 24 

hours. The media from each well was removed and 1 ml of TRIzol was added 

per 10 cm2 and pipetted up and down to lyse the cells. The cell lysate/TRIzol 

mix was added to a nuclease-free microcentrifuge tube and incubated for 5 

minutes at room temperature. To each sample 0.2 ml of chloroform (per 1ml of 

TRIzol reagent) was added, shaken vigorously by hand for 15 seconds and then 

incubated at room temperature for 2-3 minutes. Samples were then centrifuged 

at 12,000 x g for 15 minutes at 4oC for phase separation into three layers: a 

colourless aqueous upper layer containing the RNA, a middle interphase layer 

and a lower red organic layer containing the DNA and protein. The upper 

colourless layer (approximately 500 µl) was carefully removed and transferred 

into a new microcentrifuge tube and 0.5 ml of 100% molecular grade 

isopropanol (per 1ml of TRIzol reagent) added to each sample and incubated 

for 10 minutes at room temperature. Samples were then centrifuged at 12,000 x 

g for 10 minutes at 4oC and the resulting supernatant removed leaving behind 

the RNA pellet.  

To purify the RNA, 1 ml of 75% ethanol (per 1 ml of TRIzol reagent used 

in the initial step) was added and the sample vortexed and centrifuged at 7,500 

x g for 5 minutes at 4oC. The supernatant was removed and the pellet air dried 

for 5 to 10 minutes before being resuspended in 20 µl of nuclease free water 

and incubated on a heat block at 55oC for 10-15 minutes. The RNA samples 
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were kept on ice for quantification (section 2.2.5.3) and first strand cDNA 

synthesis steps (section 2.2.5.4) or stored at -80oC for later use.  

 

2.2.5.2 In vivo co-extraction of RNA and DNA 

Rat brain tissue samples described in section 2.1.7 (25–100 mg) were 

homogenised for approximately 10-20 seconds in 1 ml of TRI Reagent (Sigma) 

using a TissueRuptor (QIAGEN) and the upper aqueous phase processed for 

RNA isolation following manufacturer’s instruction. RNA pellets were 

resuspended in 20 µl nuclease free water and stored at -80°C or kept on ice 

ready for quantification (section 2.2.5.3) and first strand cDNA synthesis steps 

(section 2.2.5.4). DNA was isolated from the lower organic phase (samples were 

kept at 4°C until ready for processing) following a protocol described elsewhere 

(Kotorashvili et al., 2012). Briefly, DNA was precipitated by addition of 1.2 ml of 

100% ethanol and 20 µl of sodium acetate (NaAc), incubated at room 

temperature for 3 minutes and then centrifuged at 16,000 rpm for 30 minutes 

at 4°C. The resulting DNA pellet was washed with 100% ethanol and then air-

dried at 50°C before being resuspended in 180 µl AL buffer from the DNeasy 

Blood & Tissue Kit (QIAGEN) and subjected to proteinase K digestion and 

subsequent steps of the DNA extraction according to manufacturer’s protocol. 

Resulting DNA pellets were resuspended in 50 µl nuclease free water and 

stored at -20°C.    
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2.2.5.3 Measurement of RNA concentration by spectrometry 

RNA was quantified using a Nanodrop 8000. The Nanodrop was set to 

the RNA setting and calibrated with nuclease free water (the solvent the RNA 

was diluted in). A 1.5 µl aliquot of the RNA sample was loaded onto the pedestal 

and the absorbance measured. The amount of UV light absorbed at 260 nm by 

nucleic acids is dependent on their concentration. The Nanodrop measures the 

optical density (OD) of the RNA and then calculates its concentration (an 

OD260nm of 1 equals an RNA concentration of 40 µg/ml). The Nanodrop was also 

used to assess the quality of the RNA through measuring the 260/280 and 

260/230 ratios; expected values for high quality RNA are approximately 2.0 and 

2.0-2.2, respectively.  The RNA was then stored at -80oC.  

  

2.2.5.4 First strand cDNA synthesis 

cDNA was synthesised from total RNA, extracted using methods outlined 

in sections 2.2.5.1 and 2.2.5.2, using the GoScript Reverse Transcription System 

(Promega) following the recommended manufacturer’s protocol. For each 

sample in the experiment the same amount of RNA was used in the reverse 

transcriptase reaction, combined in a PCR tube with the following components:  

RNA (up to 5 µg)                              X µl 
Random Primers (0.5 µg/reaction)     1 µl 
Nuclease free water                          X µl 
Final volume 5 µl 

 

The mixture was denatured at 70oC for 5 minutes and then cooled on ice. The 

following reverse transcription mix was added to the RNA, random primers and 

nuclease free water and made up to a final reaction volume of 20 µl: 
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Component                              Volume 
(n=1) 

Final 
Concentration 

Nuclease free water (to a final volume of 15 µl)                     Xµl - 
GoScript 5X reaction buffer                                                  4 µl 1X 
MgCl2 (25 mM)                                                                      4 µl 5 mM 
PCR nucleotide mix (10 mM of each dNTP)                          1 µl 0.5 mM 
Recombinant RNasin Rinonuclease inhibitor (40 U/µl)       0.5 µl 1 U/µl         
GoScript Reverse Transcriptase                                           1 µl - 
  

The reaction mixtures were incubated at 25oC for 5 minutes to allow primer 

annealing and then incubated at 42oC for 60 minutes for the extension step. The 

reverse transcriptase was inactivated by heating the reaction to 70oC for 15 

minutes. The cDNA was diluted appropriately (if 2 µg RNA was converted a 1:20 

dilution was made) using nuclease free water and stored at -20oC. 

 

2.2.5.5 Semi-quantitative PCR analysis of mRNA expression 

For analysis of gene expression, cDNA generated as previously described 

was amplified using GoTaq DNA polymerase (Promega) following 

manufacturer’s guidelines. The GoTaq Flexi DNA Polymerase master mix is: 

 

Component                              Volume 
(n=1) 

Final 
Concentration 

5X Green GoTaq Flexi buffer                             5 µl 1X 
MgCl2 (25 mM)                                                                      4 µl 4 mM 
PCR nucleotide mix (10 mM of each dNTP)                          1 µl       0.4 mM 
Forward primer (20 µM)                                  0.25 µl 0.2 µM       
Reverse primer (20 µM)                             0.25 µl 0.2 µM       
GoTaq DNA polymerase (5u/µl)                      0.25 µl                                 0.05 U/µl                    
Nuclease free water                                            X µl - 
cDNA template (1:10 dilution)                                                 1 µl - 
Final volume                                                     25 µl - 
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The PCR was performed in a thermocycler: QB-96 (Quanta Biotech) or peqSTAR 

2X (peqlab). The annealing temperature of each primer set was optimised using 

a gradient PCR and are detailed in Table 2.1. The amount of cDNA template 

used varied between primer sets depending on the abundance of the target for 

amplification. In general, 1 µl of a 1:20 dilution of cDNA generated from 2 µg of 

RNA was used for target genes and a 1:200 dilution of cDNA used for reference 

genes. Standard thermal cycling conditions were as follows: incubation at 95°C 

for 5 minutes, followed by 25 or 35 cycles (for reference and target genes, 

respectively) of 95°C for 30 seconds, 57-65 °C for 30 seconds and 72 °C for 30 

seconds, with a final cycle at 72°C for 10 minutes. Samples were kept at 4°C 

prior to gel electrophoresis (section 2.2.2.3) or at -20°C for long-term storage. 

 

2.2.5.6 Quantitative PCR (qPCR)  

Total RNA and cDNA was harvested as previously described and qPCR 

performed using GoTaq qPCR Master Mix (Promega) according to the 

manufacturer’s amplification protocol. 10 µl reactions were used consisting of 5 

µl 2X master mix, 0.1 µl forward and reverse primers (20 µM), 2 µl cDNA and 

0.1 µl CXR 100X reference dye, made up to the total reaction volume with 

nuclease free water. Analysis was performed on a ViiA™ 7 Real-Time PCR 

System (Applied Biosystems). All primers used were shown to have an 

amplification efficiency of between 80-110% (primer sequences are shown in 

Table 2.1). Relative expression ratio was determined using the Pfaffl method 

(Pfaffl, 2001), explained below: 
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Target gene: 
Untreated sample: 
If A = average Ct of the target gene in untreated sample(s) 
 
Treated sample: 
If B = average Ct of the target gene in treated sample(s) 
E1 = Target efficiency  
 
Reference ("Housekeeping") gene: 
Untreated sample: 
If F = average Ct of the reference gene in untreated sample(s) 
Treated sample: 
If G = average Ct of the reference gene in treated sample(s) 
E2 = Target efficiency  
 
Then, the fold difference in target gene between the untreated and treated 

sample(s) is: 

Relative ratio = E1(A-B)/E2(F-G); where E = 10(-1/slope) 

 

2.2.5.7 Lonza StellARrayTM Gene Expression system  

qPCR analysis was performed on an iQ5 real-time PCR system (Bio-Rad) 

using 1 µl of cDNA per reaction (approximately 50 ng/µl) and GoTaq  qPCR 

Master Mix (Promega) with the addition of Fluorescene Calibration Dye (Bio-

Rad) at a final concentration of 10 nM. Changes in gene expression were 

analysed on the Lonza website (http://array.lonza.com/gpr), using the Global 

Pattern Recognition™ (GPR) analysis software designed by Bar Harbor 

Biotechnology (https://www.bhbio.com/BHB/dw/home.html). This algorithm 

internally normalised the real-time qPCR data set of each gene with respect to 

all genes within the experiment and generated a list of genes that are ranked on 

the basis of the difference between the test and control expression levels and 

the consistency of the data between the biological replicates. This proprietary 

http://array.lonza.com/gpr�
https://www.bhbio.com/BHB/dw/home.html�
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software calculated both the fold-change data and the respective p-values. The 

results for the qPCR arrays are displayed as change with respect to the 

normaliser genes that were selected based on minimal changes in expression 

(defined on Ct values) across treatment conditions obtained using the GPR 

analysis software (Akilesh et al., 2003). A list of genes on the mood array is 

given in Table 2.4. 

 

2.2.6 Bioinformatic Analysis 

2.2.6.1 ECR (Evolutionary Conserved Regions) Browser 

Conservation of transcription factor consensus binding sequences were 

addressed based on the TRANSFAC 4.0 database (Matys, 2003) available 

through the rVista 2.0 tool on the ECR Browser (http://ecrbrowser.dcode.org/) 

using the following parameters: minimum matrix conservation (similarity 

between the consensus binding site for a transcription factor and a potential 

binding site in the query sequence), 70%; minimum number of homologous 

sites (the minimum number of sites of which a matrix is built), 4; factor class 

level (the classification of transcription factors in the TRASNFAC database is 

hierarchical and include 6 levels, from family of transcription factors to splice 

variants), 4; and similarity of the sequence to the matrix, 1. 

 

2.2.6.2 Genevar (Gene Expression Variation) suite 

Analysis and visualisation of eQTL (expression quantitative trait loci) 

association patterns within the NRSF and BDNF genes was performed using the 

Java-based application platform Genevar, version 3.3.0, accessible at 

(http://www.sanger.ac.uk/resources/software/genevar). eQTL data from the 

http://ecrbrowser.dcode.org/�
http://www.sanger.ac.uk/resources/software/genevar�
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HapMap study based on lymphoblastoid cell lines from CEU individuals was 

used to address SNP-gene associations (Stranger et al., 2012). Analysis 

parameters were set to default (Spearman’s rank correlation coefficient, rho) 

with 10,000 permutations in order to construct a distribution of the test 

statistic, under the null hypothesis of no SNP–probe associations. This involves 

randomly re-assigning expression intensities to the individuals’ genotypes and 

re-computing the correlation coefficient and statistical significance for the 

shuffled dataset, which is repeated 10,000 times (Yang et al., 2010). 

 

2.2.6.3 HapMap Genome Browser and Haploview 

SNP genotype data for genomic regions of interest corresponding to 

individuals from the CEPH trios of European descent were downloaded from 

the HapMap Genome Browser, release #28 (August 2010, NCBI build 36, dbSNP 

b126), which can be accessed at http://hapmap.ncbi.nlm.nih.gov/. Genotype 

data was uploaded into Haploview 4.1 (www.broad.mit.edu/mpg/haploview/), 

freely available software for measuring linkage disequilibrium (LD), defining 

haplotype blocks and identifying haplotype tagging SNPs (htSNPs) (Barrett et 

al., 2005). Under the standard Linkage format, htSNPs were identified using the 

pairwise-tagging function (r2 threshold, 0.8). SNPs were filtered to include only 

those with a minor allele frequency (MAF) of greater than 5% within a 

Caucasian population.  

LD analysis was performed using the D-prime (D’) statistic, which is 

derived from the earliest measures of disequilibrium, termed D. D quantifies 

disequilibrium as the difference between the observed frequency of a two-locus 

haplotype (combination of alleles at adjacent loci on a single chromosome) and 

http://hapmap.ncbi.nlm.nih.gov/�
http://www.broad.mit.edu/mpg/haploview/�
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the frequency it would be expected to show if the alleles were segregating at 

random. Adopting the standard notation for two adjacent loci — A and B, with 

two alleles (Aa and Bb) at each locus — the observed frequency of the 

haplotype that consists of alleles A and B is represented by PAB. Assuming the 

independent assortment of alleles at the two loci, the expected haplotype 

frequency is calculated as the product of the allele frequency (P) of each of the 

two alleles, or PA × PB. Therefore, one of the simplest measures of 

disequilibrium is: D= PAB − PA × PB, which states the linear relationship 

between a given pair of markers, were a D' value of 1 represents complete LD. 

The squared correlation coefficient (r2), used for htSNP analysis and therefore 

also a measure of LD, is determined by dividing D’ by the product of the four 

allele frequencies. When r2 = 1, this indicates that two markers have equal allele 

frequencies and are therefore in complete LD (D’ = 1).  

 

2.2.6.4 HaploReg  

To determine the potential regulatory effects of non-coding SNPs within 

the genome, we uploaded SNPs of interest into the online package HaploReg, 

version 2, accessible at http://www.broadinstitute.org/mammals/haploreg/ 

haploreg.php. This tool allows for annotation of the functional effects of non-

coding SNPs on evolutionary conservation, chromatin states and regulatory 

elements. The latter is assessed through allele-specific alterations to position 

weight matrices (PWMs) of known transcription factors using ENCODE 

(Encyclopaedia of DNA elements) data, determined by logarithm of odds (LOD) 

calculations (Ward and Kellis, 2012).  

 

http://www.broadinstitute.org/mammals/haploreg/%20haploreg.php�
http://www.broadinstitute.org/mammals/haploreg/%20haploreg.php�
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2.2.6.5 NCBI 

Sequence alignments between human and rat genomes were performed 

using the basic local alignment search tool of nucleotide databases (BLASTN) 

(Altschul et al., 1997), available at NCBI (http://blast.ncbi.nlm.nih.gov/ 

Blast.cgi). BLAST finds regions of local similarity between sequences through 

making comparisons of nucleotide or protein sequences to sequence databases, 

calculating the statistical significance of matches. BLAST can be used to infer 

functional and evolutionary relationships between sequences as well as help to 

identify members of gene families. 

 

2.2.6.6 Pathway analysis tools 

2.2.6.6.1 MetaCoreTM 

Gene expression data generated from GPR analysis (see section 2.2.5.7) 

was uploaded into the online biological pathway analysis software MetaCoreTM, 

version 6.15 build 62452. Functional enrichment of the experimental dataset 

was performed using: 1) the Pathway Map analysis tool to identify significantly 

associated pathways based on p-value and GPR fold-change and 2) Build 

Network for Your Experimental Data feature using the Transcription Factor 

Targets Modelling algorithm with default settings under Analyse Networks 

(Transcription Factors) to generate sub-networks based on the presence of 

transcription factors and/or receptor targets within the original input file. 

Genes/proteins uploaded from experimental datasets and from which pathways 

were built upon were termed ‘seed nodes’. 

 

 

http://blast.ncbi.nlm.nih.gov/%20Blast.cgi�
http://blast.ncbi.nlm.nih.gov/%20Blast.cgi�
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2.2.6.6.2 DIANA-miRPath 

Predicted NRSF target miRNAs were uploaded into the freely available 

DIANA-miRPath pathway analysis web-server that utilises experimentally 

validated miRNA interactions derived from DIANA-TarBase v6.0. Using a 

complex meta-analysis algorithm, the software performs enrichment analysis of 

miRNA gene targets with the Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) pathway database; a resource of pathway maps based on metabolism, 

cellular processes, genetic processing, environmental interactions and human 

diseases, generating  KEGG pathway hits with a p-value of <0.05 (Vlachos et al., 

2012). Diana-miRPath can be accessed from: http://diana.imis.athena-

innovation.gr/ DianaTools/index.php?r=mirpath/index. 

 

2.2.6.7 Sequence Manipulation Suite 

The CpG Islands sequence analysis function available at the Sequence 

Manipulation Suite (http://www.bioinformatics.org/sms2/cpg_islands.html) 

reports potential CpG islands using the method described by Gardiner-Garden 

and Frommer (1987). The calculation is performed using a 200 bp window 

moving across the sequence at 1 bp intervals. CpG islands are defined as 

sequence ranges were the observed/expected value is greater than 0.6 and the 

GC content is greater than 50%. The expected number of CpG dimers in a 

window is calculated as the number of 'C's multiplied by the number of 'G's 

divided by the window length.  

 

 

 

http://diana.imis.athena-innovation.gr/%20DianaTools/index.php?r=mirpath/index�
http://diana.imis.athena-innovation.gr/%20DianaTools/index.php?r=mirpath/index�
http://www.bioinformatics.org/sms2/cpg_islands.html�
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2.2.6.8 UCSC Genome Browser and Galaxy 

Bioinformatic analysis of human and rat genomes were performed using 

the UCSC Genome Browser, assembly hg19 and rn5, respectively 

(http://genome.ucsc.edu/). For intersection of NRSF binding sites taken from 

ENCODE transcription factor ChIP-seq data (March 2012 release) with flanking 

sequences of precursor-microRNAs (pre-miRNAs), data was uploaded through 

the Table Browser function on UCSC into the web-based platform Galaxy 

(https://usegalaxy.org/). NRSF binding sites were overlapped with the 10 Kb 

upstream flanking sequences of pre-miRNAs using the intersect tool under the 

Operate on Genomic Intervals function, which allows for intersection of the 

intervals of two datasets. Data was downloaded as a spreadsheet for analysis. 

 

2.2.7 Genotyping  

2.2.7.1 SNP analysis 

Markers mapping the NRSF and BDNF genes and their respective 

flanking sequences (10 Kb upstream and downstream) were selected based on 

implications from the literature (see Table 3.2 and 3.3) and/or maximum 

genetic coverage through the selection of htSNPs (see section 2.2.6.3). A total of 

38 SNPs were selected for genotyping; 14 in NRSF and 24 in BDNF. Multiplex 

primer assays were designed using Sequenom Assay Design software 

(https://mysequenom.com/default.aspx). SNPs were divided across two 20-

plex assays. Oligonucleotides were purchased from Metabion (Martinsried, 

Germany). PCR assays were carried out on a Veriti thermal cycler (Applied 

Biosciences) in a 384-well microtitre plate using 20 ng of genomic DNA from 

the SANAD cohort (see section 2.1.4.2.1) and with a final reaction volume of 4 µl. 

http://genome.ucsc.edu/�
https://usegalaxy.org/�
https://mysequenom.com/default.aspx�
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As a measure of quality control, six replication samples and six blank controls 

were used. Genotyping was performed on a MALDI-TOF (Matrix Assisted Laser 

Desorption/Ionization-Time of Flight)-based Sequenom iPLEX MassARRAY® 

platform (Sequenom Inc., San Diego, CA, USA), according to the manufacturer’s 

instructions.  

 

2.2.7.2 VNTR analysis 

The MIR137 VNTR was genotyped on an ABIPRISM 3130XL Genetic 

Analyser (Applied Biosystems) capillary electrophoresis platform. DNA 

amplification was performed using 5 ng genomic DNA following the protocol 

described in section 2.2.5.5 and the human MIR137 VNTR primer set detailed in 

Table 2.1. The reverse primer was synthesised with the addition of a 5′ -

terminal 6-carboxyfluorescein (FAM) (Eurofins MWG Operon). For analysis on 

the 3130XL platform, 2 µl of PCR product was subjected to capillary 

electrophoresis against an internal size standard (GeneScan 500 ROX) (Applied 

Biosystems) following the manufacturers’ protocol. The appropriate run 

module was selected for a 36 cm array length and the POP-7 Polymer (Applied 

Biosystems), with an injection time of 2,400 seconds.  

Fragment analysis was performed using the GeneMapper Software 

version 4.0 (Applied Biosystems) and validated using gel electrophoresis. For 

gel electrophoresis, PCR products were separated on a 2% agarose gel as 

described in section 2.2.2.3. Expected fragment sizes ranged between 399-518 

bp, ±15 bp. Duplicate samples were tested and negative controls were included 

on each 96-well plate. Genotyping was performed blind to age and gender. 

Statistical analysis for genotype data is detailed in section 2.2.10.1. 
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2.2.8 Chromatin Immunoprecipitation (ChIP) 

2.2.8.1 In vitro ChIP 

Cells were grown to 80% confluence in T175 flasks and treated for 1 

hour under one of the following conditions: basal (untreated), 1 or 10 μM 

cocaine or vehicle alone (see section 2.2.3.4). Samples were processed following 

methods described by Murgatroyd et al. (Murgatroyd et al., 2012). ChIP buffers 

are listed in section 2.1.2. Immunoprecipitation was performed using ChIP grade 

antibodies detailed in Table 2.3. PCR analysis of the immunoprecipitated 

chromatin samples was performed using primers targeting predicted NRSF 

binding sites (BS) across the BDNF (Chapter 3) and MIR137 gene loci (Chapter 

4). Primer sequences are detailed in section 2.1.8, Table 2.1. 

 

2.2.8.2 In vivo ChIP 

Tissue punches were taken from the left and right hemispheres of rat 

cortex, hippocampus and amygdala of male Sprague Dawley rats (n=3 for each 

treatment condition, see section 2.1.7) using a 1 mm tissue punch. Samples were 

processed as described in Murgatroyd et al. (2012), with the following 

adjustments: 1) homogenisation was performed in 500 µl 1X PBS, the samples 

gently vortexed and further homogenised using a pipette, 2) fixation was 

performed with 13.5 µl 37% formaldehyde and the samples incubated for 10 

minutes at room temperature with shaking (1,000 rpm) and quenched with 

51.35 µl 1.25M glycine and incubated at room temperature for 5 minutes with 

shaking at 800 rpm, 3) 3X washes with ice-cold 500 µl 1X PBS supplemented 

with 1X PIC (Sigma, P8340, 100X in DMSO) were performed, 4) 500 µl cellular 

lysis buffer and nuclear lysis buffer (composition outlined in section 2.1.2) was 
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used for cellular lysis and nuclear extraction, 5) samples were sonicated in 

nuclear lysis buffer using a BioRuptor Plus (Diagenode) on high power settings 

for 13 cycles of 30 seconds on/30 seconds off with mixing of the samples using 

a pipette and centrifugation performed after 7 cycles and 6) sonicated samples 

were pelleted by centrifugation at 10,000 x g for 10 minutes at 4°C to release 

the DNA and proteins, 7) to determine the concentration of each sample 25 µl 

aliquots were taken and made up to 50 µl using nuclease free water and 

supplemented with 3 µl 5M NaCl and 1 µl RNAse1 (10 U/(Promega) and 

incubated at 37°C for 30 minutes with shaking (800 rpm) and then 1 µl 

proteinase K (20 mg/ml) was added and the samples incubated at 65°C with 

shaking (800 rpm) for 2 hours before the samples were column purified using 

the Wizard® SV Gel and PCR Clean-Up System (Promega) following 

manufacturer’s instruction and eluted in 20 µl nuclease free water and the 

concentration determined using a Nanodrop 8000 and 8) recovered DNA was 

subjected to gel electrophoresis on a 1% agarose gel to check fragment sizes 

(section 2.2.2.3).  

For each immunoprecipitation (IP), 5 µg of the sheared chromatin was 

made up to 250 µl using ChIP Dilution Buffer, supplemented with 10 µl/ml 100X 

PIC and incubated overnight at 4°C on a rotating wheel with antibodies raised 

against histone H3, NRSF (C- and N-terminal antibodies were used), MeCP2 and 

EZH2. Details of the concentration of antibody used per IP are outlined in Table 

2.3. The protein–DNA complexes were added to 40 µl DynabeadsTM (Thermo 

Scientific), which were first pre-cleared by washing twice with 1 ml ChIP 

dilution buffer supplemented with PIC; the second wash step was left for 2 

hours, and then incubated on a rotating wheel for 1 hour at 4°C. The magnetic 
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Dynabead™/protein–DNA complexes were captured by placing the tubes in a 

magnetic rack for 1 minute to separate the beads from the solution and the 

supernatant discarded. DNA bound magnetic beads were subjected to 5 minute 

wash steps (performed in a 4°C cold room) with rotation to remove non-specific 

DNA and proteins associated with the Dynabeads™. Firstly, the beads were 

washed with 1 ml of low-salt wash buffer, followed by high-salt wash buffer, 

LiCl wash buffer and finally TE buffer. The immune complex was eluted by 

adding 50 μl of elution buffer containing 50 μg/ ml proteinase K to the magnetic 

bead/protein–DNA complexes and the supernatant transferred to a new 

microcentrifuge tube and mixed at 65°C for 2 h to release the protein-bound 

DNA and reverse the cross-linking. The samples were then incubate at 95°C for 

10 min to denture the proteins and inactivate the proteinase K and the DNA 

recovered from the sample through spin column purification using the Wizard® 

SV Gel and PCR Clean-Up System (Promega) in a volume of 20 µl. The DNA was 

quantified using a Nanodrop 8000 and analysed by PCR (section 2.2.5.5).   

 

2.2.9 Methylated DNA Immunoprecipitation (MeDIP) 

Methylated double stranded DNA was isolated from genomic DNA 

samples using the CpG Methyl Quest DNA Isolation Kit (Merck Millipore), 

following manufacturer’s instruction. Briefly, 300 ng (recommended 

concentration) of sonicated genomic DNA was incubated for 1 hour at room 

temperature on a rotating wheel with 5 µl of pre-cleared CpG MethylQuest 

glutathione paramagnetic beads, which are pre-coupled to a GST (glutathione-S-

transferase protein)-MBD (methyl binding domain) fusion protein that 

specifically binds methylated double stranded DNA. Methylated sequences 
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bound to the CpG Methyl Quest fusion-protein/bead complex were subjected to 

wash steps and the supernatant containing the non-methylated DNA was kept 

for comparison. The methylated DNA was eluted from the beads by heating the 

samples at 80°C for 10 minutes with mixing in 100 µl TE buffer. The sample was 

separated from the beads by placing the tubes in a magnetic rack and 

transferred to a new microcentrifuge tube and the beads discarded. Samples 

were subjected to PCR analysis (section 2.2.5.5) and then stored at -20°C.  

 

2.2.10  Statistical Analysis 

2.2.10.1 Clump analysis 

Significance-testing of allele frequency and genotype data for the 

MIR137 VNTR between cases and controls of the schizophrenia cohort 

(Materials section 2.1.4.4) and BRCA wild type (Wt) individuals, BRCA1 positive 

individuals, BRCA2 positive individuals, BRCA1 and 2 positive individuals 

combined and healthy controls of the breast cancer cohort (Materials section 

2.1.4.1) was performed using Clump 24 analysis software which can be accessed 

from http://www.davecurtis.net/dcurtis/software.html. The Clump program 

assesses the significance of the departure of observed values from the expected 

values using a Monte Carlo-based approach. It does this by performing repeated 

simulations (10,000) to generate contingency tables (2 x N) that have the same 

marginal totals as the one under consideration and counting the number of 

times that a chi-squared value associated with the real table is achieved by the 

randomly simulated data. The Clump software also generates a novel chi-

squared value (T4) by ‘clumping’ columns together into a new two-by-two table 

in a way which is designed to maximise the chi-squared value and directly tests 

http://www.davecurtis.net/dcurtis/software.html�
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the hypothesis that several alleles are more common among the cases than 

among the controls (Sham and Curtis, 1995). The Clump program generates 

four test statistics using Monte Carlo methods to evaluate the significance of 

chi-squared values by assessing how many times the observed value produced 

is exceeded by chance from the randomly generated simulated datasets. The 

four tables are as follows:  

T1: The raw 2-by-N table supplied by the user  

T2: The original table with columns containing small numbers ‘clumped’ 

together 

T3: The most significant of all 2-by-2 tables obtained by comparing each (non-

rare) column of the original table against the total of all the other columns 

T4: A 2-by-2 table obtained by ‘clumping’ the columns of the original table to 

maximise the chi-squared value 

 

2.2.10.2 Composite genotype analysis  

Composite genotype analysis between NRSF rs2227902 and BDNF 

rs6265 was performed using SPSS 2.1. Markers were grouped by the number of 

risk alleles and scored as follows: group 1 represented 0-1 risk alleles, group 2 

represented 2 risk alleles in individuals that were either heterozygous for each 

SNP or homozygous for rs2227902 (G) and group 3 represented 3-4 risk alleles. 

Groupings for the presence or absence of the minor alleles for each SNP were 

also performed as previously described (Miyajima et al., 2008b). Linear 

regression analysis was performed to determine associations between 

composite-genotypes with cognitive test scores for the SANAD dataset (see 

section 2.1.4.2) over time (i.e. the difference between each individual’s cross-
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sectional and longitudinal test scores). Age, sex and epilepsy type were 

controlled for by covarying their effects. Scatter plots illustrating these 

associations were generated using GraphPad Prism, version 5.03. Significant 

differences between genotypes for individual SNPs with cognitive test scores 

were determined using the Mann-Whitney test. P<0.05 were regarded 

significant.  

   

2.2.10.3 Hardy-Weinberg Equilibrium (HWE) 

As a measure of quality control in our SNP association study, we tested 

our genotype data for departure from HWE as this can be used as an indicator 

of genotyping errors and population stratification. For analysis of HWE, we used 

the Hardy-Weinberg equilibrium calculator (http://www.oege.org/software/ 

hwe-mr-calc.shtml) which implements the Pearson chi-square (X2) test statistic 

to assess goodness-of-fit of the observed genotype frequency against the 

expected under HWE (Rodriguez et al., 2009).  

 

2.2.10.4 Regression analysis 

Associations between cognitive test scores and genotype frequency data 

for the SANAD cohort (see section 2.1.4.2) were analysed using regression 

analysis and Expectation-Maximisation (EM), which was kindly performed by 

Dr. Fabio Miyajima, University of Liverpool, using Stata v.9.2. EM was used to 

compute maximum likelihood (ML) estimates of parameters for the longitudinal 

model based on probability distribution (Dempster et al., 1977). Briefly, ML 

estimations are based on a mixed model accounting for both the fixed- and 

random-effects of the variance components in longitudinal models. Mixed-

http://www.oege.org/software/%20hwe-mr-calc.shtml�
http://www.oege.org/software/%20hwe-mr-calc.shtml�
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effects represent the regression coefficient (the slope that represents the rate of 

change in the dependent variable as a function of change in the independent 

variables) of the average individual in the study population (fixed-effects) and 

individual-specific random deviations from the overall slope (random-effects).  

In the mixed-effect ML model, the likelihood function for a given 

parameter is maximized with respect to the fixed-effects, finding the most likely 

value for the parameter based on the dataset collected. However, the degrees of 

freedom (d.f.) lost by estimating the fixed-effects are not taken into account 

using this model as it assumes that the fixed-effects are known without error, 

which leads to biased estimates of the variance components (Visscher et al., 

2004). To overcome this, the longitudinal analysis was based on mixed-effects 

linear regression using Restricted Maximum Likelihood (REML) which 

maximises the estimated likelihood of the variance components affecting the 

observed measurement, invariant to the fixed-effects (Patterson and Thompson, 

1971). In contrast to ML estimates, REML accounts for the d.f. lost by estimating 

the fixed-effects making it a less biased estimation of the error variance. REML 

was applied to correct for biases that may have arisen due to selection 

(Henderson, 1986, Searle, 1989).  

To correct for multiple testing, the data was permutated 1,000 times. 

Permutation testing was performed with respect to the number of markers at 

the gene level. Cognitive data was normally distributed and age, sex, epilepsy 

type, number of previous seizures at baseline (continuous variable, cross-

sectional analysis) and freedom from seizure since baseline (categorical 

variable, longitudinal analysis) were accounted for by covarying their effects. P-

values lower than 5% were regarded as significant. See Appendix 4 for scripts. 
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Chapter 3 

 

The NRSF-BDNF Pathway Underlies Multiple CNS Disorders  

 

Part I:  The NRSF-BDNF pathway in genetic predisposition to cognitive decline in 

epilepsy 

Part II:  Complex promoter usage and transcriptional regulation of the human 

BDNF gene in response to cocaine 
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Part I: The NRSF-BDNF pathway in genetic predisposition to 

cognitive decline in epilepsy 

3.1 Introduction 

People with epilepsy often experience cognitive impairments but the 

exact cause remains unclear and may be reflective of the underlying aetiology of 

the disorder, the neurobiological consequences of seizures, the adverse effects 

of antiepileptic drug (AED) treatment and psychosocial dysfunction (Motamedi 

and Meador, 2003, Tellez-Zenteno et al., 2007, Taylor and Baker, 2010, Taylor et 

al., 2010, Berg, 2011). AEDs have been considered the principal culprits, with 

memory, attention, psychomotor speed and information processing being the 

cognitive domains most commonly reported to be affected following drug 

treatment (Park and Kwon, 2008). However, recent work suggesting that some 

people with epilepsy are cognitively compromised from the time of initial 

diagnosis would advocate the involvement of more intrinsic biological 

processes, including epileptogenesis (Taylor et al., 2010, Hermann et al., 2006). 

Genetics may also play an important contributory role as suggested from 

genetic association studies which have identified ‘risk genes’ for cognitive 

dysfunction in normal ageing and neurological disease. Polymorphisms in the 

NRSF and BDNF genes have previously been associated with age-related and 

disease-associated cognitive decline such as in Alzheimer’s disease (Miyajima et 

al., 2008a, Honea et al., 2013, Voineskos et al., 2011, Lu et al., 2014). Moreover, 

an additive interaction between genetic variants within these two genes 

correlates with general intelligence scores in the normal ageing population 

(Miyajima et al., 2008b), suggesting that the NRSF-BDNF pathway may be an 
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important mechanism in cognitive dysfunction; a common co-morbidity in 

several neurological disorders.  

NRSF and its downstream target BDNF, a neuron-specific growth factor 

involved in neurogenesis, cell survival and synaptic plasticity (Huang and 

Reichardt, 2001, Scharfman et al., 2005, Pencea et al., 2001, McAllister et al., 

1999, Ghosh et al., 1994), have been shown to be differentially regulated in 

rodent models of epilepsy (Palm et al., 1998, Calderone et al., 2003, Spencer et 

al., 2006, Hu et al., 2011b, Roopra et al., 2001, Garriga-Canut et al., 2006, Liu et 

al., 2012b, Ballarín et al., 1991, Nibuya et al., 1995, McClelland et al., 2011, 

McClelland et al., 2014). The involvement of these two genes in both cognition 

and epilepsy supports a role for the NRSF-BDNF pathway in epilepsy-associated 

cognitive dysfunction. Consistent with this pathway being modulated by drug 

action, several AEDs modify NRSF and BDNF signalling in neuronal cells (Gillies 

et al., 2011, Gillies et al., 2009, Shi et al., 2010).  

In this chapter, the genetic effects of single nucleotide polymorphisms 

(SNPs) spanning the NRSF and BDNF genes on the cognitive profile of 

individuals with newly-diagnosed epilepsy were explored using DNA samples 

and cognitive data drawn from the subgroup analysis of the SANAD (Standard 

and New Anti-epileptic drugs) trial available through collaborators within the 

Department of Molecular and Clinical Pharmacology, University of Liverpool 

(Taylor and Baker, 2010, Taylor et al., 2010). Both a cross-sectional and 

longitudinal model was employed to determine genetic association at both 

baseline, when subjects were first recruited into the study and were drug naïve, 

and at 12-month reassessment, to address change in cognitive function over the 

first year of treatment following diagnosis.  
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3.2 Aims 

 Determine whether there is a genetic influence of common variants 

within the NRSF and BDNF genes on the cognitive profile of adults with 

new-onset epilepsy 

 Investigate the longitudinal effects of genetic variation on the 

progression of cognitive dysfunction associated with epilepsy 

 Address the potential functional significance of NRSF and BDNF SNPs 

identified as genetic correlates of memory performance by overlapping 

them with expression quantitative trait loci and regulatory elements 

using the online databases Genevar and HaploReg  
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3.3 Results 

3.3.1 Demographic and clinical characteristics of the study cohort 

Descriptive analysis of the patient cohort was carried out using SPSS 

22.0. A summary of the study population is provided in Table 3.1. The mean 

age of subjects at baseline was 40 years, with a range of 15 to 71 years. There 

were marginally more females (55%) and the majority of subjects were 

considered to have focal epilepsy (82%). The mean number of days from 

baseline assessment to the 12-month follow-up assessment was 388 days, 

ranging from 350 to 566 days. The number of individuals that were seizure free 

at the 12-month assessment was 19. Cognitive tests used for the cross-sectional 

and longitudinal analyses are listed in Table 3.2. The test battery methods are 

described in detail elsewhere (Taylor et al., 2010). Only those aspects of the 

battery that had previously been shown to differ significantly between epilepsy 

patients and healthy controls were employed in the genetic association analysis. 

 

 

Table 3.1. Demographic and clinical profile of the study cohort at baseline and 12-month 
assessment 
 

Variable  Baseline  
(n=82) 

12 months  
(n=70) 

Sex  Males (n) 37; 45%   31; 44% 
 Females (n) 45; 55% 39; 56% 
Age   Mean [range] 40 [15 - 71] 42 [16 - 70] 
Years of education  Mean [range] 12.9 [11 - 19] - 
Epilepsy type   Generalised (n) 15; 18% 13; 19% 
 Focal (n) 67; 82% 57; 81% 
No. of previous seizures at baseline Mean [range] 112 [2 – 3,300] - 
Remission status at follow-up Seizure-free (n) - 19; 27% 
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Table 3.2. Selected cognitive tests employed in this analysis 
 
Analysis Domain Test Measured variable 

Cross-sectional 

Memory 

Figure recognition (serial task) Number of figures correctly 
identified in the serial task  

Rey Auditory Verbal Learning 
Task, AVLT (immediate and 
delayed) 

Sum of words recalled over the 
5 trials and the number of words 
recalled following  a 30 minute 
delay  

Story Recall (immediate) Number of story units recalled 
immediately and following a 10 
minute delay 

Psychomotor 
speed 

Finger tapping (dominant 
hand) 

Average number of taps for the 
dominant hand across five trials 

Adult Memory and Information 
Processing (average speed) 

Average number of digits 
crossed-out over two trials 

Longitudinal 

Memory 

Rey Auditory Verbal Learning 
Task, AVLT (immediate and 
delayed)  

Sum of words recalled over the 
5 trials and the number of words 
recalled following  a 30 minute 
delay  

Psychomotor 
speed 

Visual Reaction Time, VRT 
(non-dominant hand) 

Average reaction time (min/sec) 
for the dominant and non-
dominant hand  

Information 
processing 

Computerised Visual Search 
Task, CVST 

Average speed of response 
(seconds) 

 
Note: Cognitive tests selected based on aspects of the battery previously shown to significantly 
differ between epilepsy patients and healthy controls (Taylor et al., 2010). 
 

 

3.3.2 Association of NRSF and BDNF SNPs with memory related tasks  

A total of 36 SNPs were successfully genotyped across the two genes; 

these are listed in Table 3.3. All were in Hardy-Weinberg equilibrium (HWE) 

and had a minor allele frequency (MAF) of >0.05. Two of the SNPs (NRSF 

rs11736869 and BDNF rs11030119) from the original panel were excluded as 

they had a call rate of less than 95%, the accepted cut-off for genotype-based 

studies (Edenberg and Liu, 2009). Two patient samples were excluded from the  
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Table 3.3. Minor allele frequencies and Hardy-Weinberg equilibrium of NRSF and BDNF SNPs 

Gene Marker Chromosomal 
position 

Base pair 
change 

Genotype 
distribution 

HWE        
P-value 

MAF 

NRSF rs3806746 57773330 A>G 25/40/6 0.07 0.37 
 rs4109037 57775609 A>T 65/17/0 0.30 0.10 
 rs3755901 57775996 A>T 64/17/1 0.91 0.12 
 rs3000 57777945 C>T 27/36/9 0.57 0.38 
 rs1713985 57786450 A>C 68/14/0 0.40 0.09 
 rs13125082 57787000 T>G 38/27/6 0.70 0.28 
 rs6847086 57791864 G>A 25/36/9 0.48 0.39 
 rs1277306 57792078 T>C 35/40/7 0.34 0.33 
 rs1105434 57793751 G>A 29/33/9 0.93 0.36 
 rs2227902 57797100 G>T 57/15/0 0.32 0.10 
 rs3796529 57797414 G>A 49/26/2 0.50 0.20 
 rs2227901 57798189 G>A 54/26/2 0.58 0.18 
 rs781667 57798469 T>C 40/38/4 0.18 0.28 
BDNF rs1491851 27752763 C>T 33/27/12 0.13 0.35 
 rs2049048 27750586 C>T 47/18/4 0.22 0.19 
 rs1491850 27749725 T>C 24/44/14 0.42 0.44 
 rs11030123 27748285 G>A 65/14/2 0.24 0.11 
 rs12273363 27744859 T>C 45/27/0 0.05 0.19 
 rs11030121 27736207 C>T 34/28/9 0.40 0.32 
 rs7934165 27731983 A>G 16/35/14 0.53 0.49 
 rs2030324 27726915 T>C 25/37/16 0.73 0.44 
 rs988748 27724745 C>G 50/28/3 0.70 0.21 
 rs2049046 27723775 A>T 28/35/18 0.27 0.44 
 rs7127507 27714884 T>C 34/27/11 0.16 0.34 
 rs7103411 27700125 T>C 43/27/2 0.35 0.22 
 rs11030108 27695464 G>A 38/31/11 0.26 0.33 
 rs2049045 27694241 G>C 55/25/2 0.67 0.18 
 rs11030104 27684517 A>G 51/28/3 0.72 0.21 
 rs11030102 27681596 C>G 43/34/3 0.23 0.25 
 rs6265 27679916 G>A 53/27/2 0.50 0.19 
 rs7124442 27677041 T>C 38/31/13 0.13 0.35 
 rs4923463 27672500 A>G 52/27/3 0.83 0.20 
 rs10501087 27670108 T>C 44/26/2 0.42 0.21 
 rs7927728 27667472 G>A 60/8/1 0.25 0.07 
 rs11602246 27660926 C>G 63/9/0 0.57 0.06 
 rs11030094 27659775 G>A 28/33/11 0.80 0.38 

Note: Markers in bold font represent the 10 SNPs selected for further analysis. Base pair 
change represents major>minor allele. Genotype distribution represents AA/Aa/aa, where 
‘A’ is the wild type allele and ‘a’ the variant allele. HWE, Hardy-Weinberg equilibrium; 
htSNPs, haplotype-tagging single nucleotide polymorphisms; MAF, minor allele frequency. 
  



 

119 
 

analysis as they failed quality control checks. Ten non-coding or non-

synonymous SNPs were selected for inclusion in the genetic association analysis 

on the basis of maximum genetic coverage through the use of haplotype-tagging 

SNPs (htSNPs) (see section 2.2.6.3) or based on known or proposed functional 

effects, see Table 3.4. These included three SNPs in NRSF (rs1105434, 

rs2227902, rs3796529) and seven SNPs in BDNF (rs1491850, rs12273363, 

rs2030324, rs11030108, rs6265, rs7124442, rs11030094). Squared correlation 

coefficient (r2) estimates were used to determine htSNPs (see section 2.2.6.3). 

This is a measure of LD that directly depends on allele frequencies were an r2 

value of 1 indicates that two SNPs have identical allele frequencies and every 

occurrence of one allele of a SNP perfectly predicts the allele of the second SNP 

(i.e. the two SNPs are in perfect LD), meaning that only one SNP needs to be 

genotyped to know the genotype of the other. Pairwise tagging SNP analysis 

(r2>0.8) of the genotype data revealed that NRSF rs1105434, rs2227902 and 

rs3796529 were in strong LD with the rs3000 (r2=0.94), rs3755901 (r2=1.0) 

and rs2227901 (r2=1.0) markers, respectively. For BDNF, the markers 

rs1491850, rs12273363, rs2030324, rs11030108, rs6265, rs7124442 and 

rs11030094 represented 13/24 SNPs genotyped for this gene. A schematic 

representation of the genomic coverage of these htSNPs is shown in Figure 3.1. 

To determine associations between cognitive test scores and genotype 

frequency, regression analysis and Expectation-Maximisation (EM) were 

performed (see section 2.2.10.4). Statistical modelling was kindly performed by 

Dr. Fabio Miyajima, University of Liverpool, using Stata v.9.2. EM is a method for 

estimating the maximum likelihood (ML) of a parameter based on probability 

distribution of the independent observations. Briefly, ML estimations are based 
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Table 3.4. Functional SNPs included in the genetic association analysis 

Gene Marker SNP type Function Reference 

NRSF rs1105434 Intronic  Located 30 bp upstream of an alternative exon (exon N) within the NRSF gene 
which encodes for a truncated protein, sNRSF, associated with epileptogenesis. 

(See section 3.3.4) 

 rs2227902 Exonic, NS (missense) In LD with a coding VNTR within NRSF. Common haplotype associated with 
lower scores of g in the elderly. Additive interaction between minor haplotype 
and major allele of BDNF rs6265 (Val66-G) associated with higher scores of g.  

(Miyajima et al., 2008b) 

 rs3796529 Exonic, NS (missense) Minor allele associated with neuroprotective effects in subjects with amnestic 
mild cognitive impairment.  

(Nho et al., 2015) 

BDNF rs1491850 Promoter (6.1 Kb 
upstream of transcript 
NM_170731)  

Associated with hippocampal atrophy in AD and anti-depressant treatment 
response phenotypes in MDD. 

(Honea et al., 2013, Kocabas et al., 2011, 
Gratacos et al., 2008) 

 rs12273363 Promoter (1.3 Kb 
upstream of transcript 
NM_170731) 

Minor allele associated with autism (haplotype analysis), BPD, MDD, reduced 
BDNF hippocampal density in Stanley Consortiuma subjects, silencing of BNDF 
promoter IV reporter gene activity in rat hippocampal and cortical cultures and 
reducing rat promoter VI response to neuronal activation by KCl depolarisation. 

(Gratacos et al., 2008, Dunham et al., 2009, 
Liu et al., 2008, Hing et al., 2012, Nishimura 
et al., 2007) 

 rs2030324 Internal promoter (3.7 Kb 
upstream of transcript 
NM_170733) 

Associated with BPD, cognitive abilities in the elderly and visual cognitive 
processing in multiple sclerosis. 

(Miyajima et al., 2008a, Liu et al., 2008, 
Weinstock-Guttman et al., 2011) 

 rs11030108 Intronic Associated with mild cognitive impairment in AD. (Honea et al., 2013) 
 rs6265 Exonic, NS (missense)  Minor allele (Met66-A)associated with disrupted cellular processing and 

secretion of BDNF, hippocampal atrophy in AD, non-responsiveness to anti-
depressant drugs in MDD, reduced cognitive function in normal ageing and 
neurological disorders.  

(Miyajima et al., 2008a, Mercader et al., 
2007, Hall et al., 2003, Lang et al., 2005, Jiang 
et al., 2005, Hariri et al., 2003, Lin et al., 
2014, Cheah et al., 2014, Honea et al., 2013, 
Egan et al., 2003) 

 rs7124442 3’UTR  Haplotype containing major allele associated with high BDNF plasma levels 
which correlate with eating disorders. 

(Mercader et al., 2007) 

 rs11030094 Intronic (BDNF-AS) Associated with cognitive decline and whole-brain atrophy in AD. (Honea et al., 2013, Laumet et al., 2010) 

Note: Function is with reference to regulatory function and/or disease associations from the literature. a Stanley Foundation Neuropathology Consortium consists 
of subjects with BPD, MDD, schizophrenia and matched controls. Abbreviation: AD, Alzheimer’s disease; AS, anti-sense; BPD, bipolar disorder; g, general intelligence; 
MDD, major depressive disorder; NS, non-synonymous; VNTR, variable number tandem repeat. 
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on a mixed model accounting for both the fixed-effects (an estimated parameter 

that is associated with the entire study population and is corrected for with 

repeated measurements; within-subject variability) and random-effects (a 

parameter describing the variability between individuals) of the variance 

components in longitudinal models (Dempster et al., 1977). ML estimation is a 

method that finds the most likely value for the parameter based on the dataset 

collected, maximising with respect to the fixed-effects. This method assumes 

that the fixed-effects are known without error, which leads to biased estimates 

of the variance components (Visscher et al., 2004). We therefore implemented 

Restricted Maximum Likelihood (REML) regression in our study design which 

accounts for the degrees of freedom lost by estimating the fixed-effects making 

it a less biased estimation of the error variance (Patterson and Thompson, 

1971). REML does this by maximising the estimated likelihood of the variance 

components affecting the observed measurement, in this case the cognitive test 

scores, independent to the fixed-effects. This model was used to correct for 

repeated measures and within-subject covariance (Henderson, 1986, Searle, 

1989, Patterson and Thompson, 1971). Cognitive data was normally distributed 

and age, sex, epilepsy type, number of previous seizures at baseline (continuous 

variable, cross-sectional analysis) and freedom from seizure since baseline 

(categorical variable, longitudinal analysis) were accounted for by covarying 

their effects. P-values lower than 5% were regarded as significant. 

Regression analysis of cross-sectional cognitive test scores with 

individual SNP genotypes indicated statistically significant associations for the 

respective NRSF markers rs1105434 (P=0.03) and rs2227902 (P=0.02) with 

delayed recall, as assessed by the  Rey  Auditory  Verbal  Learning  Task  (AVLT),  
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Figure 3.1. Schematic representation of genotyped haplotype-tagging SNPs (htSNPs) 

spanning the BDNF (top) and NRSF (bottom) genes. Highlighted markers represent those 

selected for genotype analysis; grey indicates htSNPs and/or functional SNPs selected for 

inclusion in the genetic association and yellow indicates SNPs captured by these selected 

htSNPs (r2>0.88) from linkage disequilibrium (LD) analysis of the genotype data. The remaining 

SNPs represent genetic coverage over the entire locus, including 10 Kb flanking sequence, as 

determined by pairwise-tagging (r2>0.8, indicating that a pair of SNPs are in strong LD and that 

one allele at one locus tags another allele at separate locus meaning that only one SNP needs to 

be genotyped) using HapMap CEU genotype data and Haploview 4.1 software 

(www.broad.mit.edu/mpg/haploview/). *SNPs shown to be significantly associated from 

genetic analysis. Image generated using UCSC Genome browser (https://genome.ucsc.edu/). 

[Figure presented on opposite page].    

 

http://www.broad.mit.edu/mpg/haploview/�
https://genome.ucsc.edu/�
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and serial recall, as assessed by the figure recognition task (Table 3.5). Three 

BDNF markers were also associated with the Rey AVLT in the cross-sectional 

analysis; rs1491850 (P=0.05, immediate recall), rs11030094 (P=0.02, delayed 

recall) and rs2030324 (P=0.03, immediate recall and P=0.01, delayed recall) 

(Table 3.5). In the longitudinal analysis, NRSF rs2227902 was again identified 

as being significantly (P=0.02) associated with memory function as was BDNF 

rs12273363 (P=0.01) and both in relation to Rey AVLT delayed recall scores. 

These observations account for the influence of age on cognitive test scores and 

reflect the interaction between the two variables (age and genotype). The 

independent effect of these SNPs in predicting memory function showed only 

BDNF rs12273363 to be significant (P=0.04) (Table 3.6). Psychomotor speed 

was also found to be significantly affected by genotype (NRSF rs3796529, 

P=0.04) in the longitudinal analysis, assessed through visual reaction time (non-

dominant hand), Table 3.6. In both the cross-sectional and longitudinal 

analysis, no significant associations were found between individual SNP 

genotypes and cognitive test scores measuring information processing (Table 

3.5 and 3.6). 

 

3.3.3 Haplotype structure of the NRSF and BDNF genes 

Particular alleles at adjacent loci on a chromosome tend to be inherited 

together in blocks known as haplotype blocks. For tightly linked loci, this may 

lead to non-random associations between alleles in the population; a property 

known as linkage disequilibrium (LD). LD can be used as a tool for mapping 

ancestral inheritance and also the structure of complex disease loci from 

genome  wide   association    studies  by   comparing   patterns   of   LD   between  
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Table 3.5. Genetic association analysis of cross-sectional cognitive data using a regression 
model adjusted for age, sex, epilepsy type and number of previous seizures at baseline 

 Gene SNP Cognitive test β Adjusted 
P-value a 

95% CI 

        Lower Upper 

NRSF rs1105434 Finger tapping (dominant hand) -0.98 0.61 -4.53 2.57 

  Story recall (immediate) 0.64 0.22 -0.43 1.71 

  Figure recognition (serial) 1.31 0.07 -0.22 2.83 

  Rey AVLT (immediate) 1.78 0.23 -1.27 4.82 

  Rey AVLT (delayed) 1.00 0.03* 0.04 2.00 

  AMIPB average speed -3.57 0.06 -7.37 0.24 
       

 rs2227902 Finger tapping (dominant hand) -1.78 0.52 -7.63 4.06 

  Story recall (immediate) 0.26 0.74 -1.48 2.00 

  Figure recognition (serial) -2.63 0.02* -5.06 -0.19 

  Rey AVLT (immediate) 1.52 0.55 -3.42 6.46 

  Rey AVLT (delayed) 0.20 0.83 -1.80 1.41 

  AMIPB average speed -0.93 0.76 -7.16 5.31 

       
 rs3796529 Finger tapping (dominant hand) 1.19 0.58 -2.90 5.28 

  Story recall (immediate) -0.50 0.42 -1.69 0.69 

  Figure recognition (serial) 0.85 0.36 -0.93 2.62 

  Rey AVLT (immediate) -1.20 0.49 -4.73 2.34 

  Rey AVLT (delayed) -0.48 0.40 -1.63 0.68 

  AMIPB average speed 0.73 0.78 -3.86 5.32 

       
BDNF rs1491850 Finger tapping (dominant hand) -1.76 0.28 -5.06 1.53 
   Story recall (immediate) 0.44 0.37 -0.51 1.38 
   Figure recognition (serial) 0.71 0.28 -0.66 2.08 
   Rey AVLT (immediate) 2.81 0.05* 0.11 5.51 
   Rey AVLT (delayed) 0.56 0.20 -0.32 1.44 
   AMIPB average speed -2.78 0.12 -6.30 0.73 

       
 rs12273363 Finger tapping (dominant hand) -3.96 0.12 -8.69 -0.76 

  Story recall (immediate) 0.82 0.25 -0.62 2.25 

  Figure recognition (serial) 0.21 0.84 -1.88 2.30 

  Rey AVLT (immediate) 2.62 0.20 -1.46 6.71 

  Rey AVLT (delayed) 0.55 0.42 -0.78 1.88 

  AMIPB average speed -1.32 0.60 -6.53 3.90 

       
 rs2030324 Finger tapping (dominant hand) 0.33 0.85 -2.87 3.53 

  Story recall (immediate) -0.50 0.29 -1.42 0.43 

  Figure recognition (serial) -1.08 0.09 -2.35 0.19 

  Rey AVLT (immediate) -2.78 0.03* -5.43 -0.13 

  Rey AVLT (delayed) -1.19 0.01* -2.01 -0.36 

  AMIPB average speed 0.96 0.60 -2.54 4.46 

       
 rs11030108 Finger tapping (dominant hand) -1.49 0.34 

 
-4.68 1.70 

  Story recall (immediate) 0.59 0.19 -0.30 1.47 

  Figure recognition (serial) 0.61 0.34 -0.69 1.90 

  Rey AVLT (immediate) 2.57 0.06 -0.02 5.17 

  Rey AVLT (delayed) 0.74 0.09 -0.10 1.57 

  AMIPB average speed 1.10 0.53 -2.26 4.47 

       
 rs6265 Finger tapping (dominant hand) 0.91 0.67 -3.19 5.00 

  Story recall (immediate) -0.31 0.61 -1.49 0.88 

  Figure recognition (serial) 0.32 0.71 -1.37 2.01 

  Rey AVLT (immediate) 0.89 0.60 -2.56 4.35 

  Rey AVLT (delayed) 0.33 0.58 -0.78 1.43 

  AMIPB average speed -1.14 0.07 -8.48 0.20 
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 rs7124442 Finger tapping (dominant hand) -1.62 0.29 -4.65 1.40 

  Story recall (immediate) 0.44 0.33 -0.43 1.30 

  Figure recognition (serial) 0.45 0.48 -0.80 1.69 

  Rey AVLT (immediate) 2.34 0.06 -0.13 4.81 

  Rey AVLT (delayed) 0.69 0.08 -0.11 1.48 

  AMIPB average speed 1.02 0.53 -2.19 4.23 

       
 rs11030094 Finger tapping (dominant hand) 2.57 0.16 -0.87 6.00 

  Story recall (immediate) -0.36 0.48 -1.42 0.69 

  Figure recognition (serial) -1.30 0.07 -2.79 0.20 

  Rey AVLT (immediate) -2.79 0.05 -5.73 0.15 

  Rey AVLT (delayed) -1.01 0.02* -2.02 -0.13 

  
AMIPB average speed 2.62 0.15 -1.21 6.47 

 

Note: a Permutation testing for the number of markers at the gene level. *P≤0.05. Negative β 
values indicate lower test scores for each copy of the minor allele. Statistical modelling was 
kindly performed by Dr. Fabio Miyajima, University of Liverpool, using Stata v.9.2. 
Abbreviations: AMIPB, Adult Memory and Information Processing Battery; AVLT, Auditory Verbal 
Learning Task; β, beta coefficient; CI, confidence interval.  
 

 

individuals with a particular disorder and healthy matched controls. As 

cognition is a highly heritable phenotype relevant to both normal and abnormal 

neurological function, we wanted to ensure that the markers identified from our 

genetic association were reflective of genetic differences associated with 

cognitive performance as opposed to differences in ancestry. To address this, 

we performed LD analysis of our genotype data using Lewontin's normalized D′ 

statistic (Lewontin, 1964) and compared it to LD patterns generated using 

genotype data from the HapMap CEU cohort as a reference group (Figures 3.2 

and 3.3). Haplotype blocks were defined using 95% confidence intervals 

proposed by Gabriel et al. (2002). Using this method, markers within the BDNF 

gene were shown to be inherited as a single haplotype block spanning 76 Kb, 

with evidence of recombination within the promoter sequence represented by 

low D’ values (Figure 3.2). Within the NRSF gene, a single haplotype block 

spanning  774  bp   was  defined,  composed  of  the  rs3796529  and  rs2227901   
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Table 3.6. Genetic association analysis of longitudinal cognitive data using a mixed-effect REML 
regression model adjusted for age, sex, epilepsy type and remission status at 12 month follow-
up (seizure free or not) 

 Gene SNP Cognitive test β P-value Adjusted       
P-value a 

95% CI 
        

 
Lower Upper 

NRSF rs1105434 VRT (non-dominant hand)† 0.06 0.64 0.70 -0.21 0.34 
    CVST† -0.01 0.95 0.85 -0.36 0.34 
    Rey AVLT (immediate) 0.52 0.91 0.90 -8.20 9.25 
    Rey AVLT (delayed) 0.12 0.94 0.74 -2.74 2.98 
        
 rs2227902 VRT (non-dominant hand)† -0.07 0.68 0.96 -0.43 0.28 
    CVST† 0.04 0.84 0.89 -0.42 0.52 
    Rey AVLT (immediate) -6.68 0.23 0.08 -17.50 4.14 
    Rey AVLT (delayed) 3.53 0.08 0.02* -7.49 0.42 

        
  rs3796529 VRT (non-dominant hand)† 0.36 0.04* 0.08 0.02 0.71 
    CVST† -0.25 0.29 0.29 -0.71 0.21 
    Rey AVLT (immediate) 2.23 0.68 0.38 -8.30 12.77 
    Rey AVLT (delayed) -1.29 0.53 0.94 -5.28 2.69 

BDNF rs1491850 VRT (non-dominant hand)† 0.15 0.26 0.43 -0.11 0.40 
   CVST† 0.17 0.27 0.73 -0.14 0.48 
   Rey AVLT (immediate) -2.33 0.58 0.43 -10.52 5.86 
   Rey AVLT (delayed) -1.81 0.19 0.08 -4.55 0.92 

        
  rs12273363 VRT (non-dominant hand)† 0.09 0.59 0.69 -0.23 0.41 
   CVST† 0.25 0.24 0.45 -0.16 0.65 
   Rey AVLT (immediate) -8.15 0.12 0.07 -18.28 1.97 
   Rey AVLT (delayed) -3.99 0.04* 0.01* -7.74 -0.25 
         
 rs2030324 VRT (non-dominant hand)† 0.08 0.52 0.31 -0.17 0.34 

  CVST† -0.13 0.39 0.36 -0.45 0.18 

  Rey AVLT (immediate) -3.80 0.32 0.43 -11.35 3.75 

  Rey AVLT (delayed) -1.10 0.43 0.84 -3.80 1.60 

        
  rs11030108 VRT (non-dominant hand)† 0.05 0.44 0.88 -0.18 0.28 
   CVST† -0.00 0.98 0.90 -0.30 0.29 
   Rey AVLT (immediate) -0.73 0.83 0.51 -7.35 5.89 
   Rey AVLT (delayed) -0.58 0.66 0.33 -3.12 1.97 

        
  rs6265 VRT (non-dominant hand)† 0.06 0.69 0.97 -0.23 0.35 
   CVST† -0.02 0.93 0.53 -0.39 0.36 
   Rey AVLT (immediate) 1.03 0.84 0.64 -8.77 10.82 
  

 Rey AVLT (delayed) -0.46 0.81 0.86 -4.08 3.16 

   
     

  rs7124442 VRT (non-dominant hand)† 0.08 0.48 0.61 -0.14 0.30 
   CVST† -0.02 0.92 0.88 -0.29 0.26 
   Rey AVLT (immediate) -1.39 0.71 0.46 -8.62 5.84 
   Rey AVLT (delayed) -0.37 0.78 0.48 -3.01 2.26 

        
  rs11030094 VRT (non-dominant hand)† 0.21 0.13 0.05 -0.06 0.48 
   CVST† -0.09 0.61 0.69 -0.45 0.27 
   Rey AVLT (immediate) -6.44 0.18 0.19 -15.76 2.87 
  

 Rey AVLT (delayed) -1.86 0.24 0.47 -4.95 1.22 

Note: a Corrected for significant covariate effects (age). *P<0.05. †Analysis undertaken on log-
transformed data. Negative β values indicate lower test scores for each copy of the minor allele. 
Abbreviations: AVLT, Auditory Verbal Learning Task; β, beta coefficient; CI, confidence interval; 
CVST, Computerised Visual Search Task; REML, Restricted Maximum Likelihood; VRT, Visual 
Reaction Time. 
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markers. As illustrated in Figure 3.3A, there are a number of recombination 

hotspots across the NRSF gene, depicted by the white regions on the LD plot 

(D′<1; logarithm of odds, LOD, <2). However, analysis of the genetic coverage 

over the locus captured by the htSNPs selected for inclusion in our genetic 

analysis using genotype data from the HapMap CEU cohort showed an 

additional haplotype block of strong LD spanning 21 Kb, with evidence of 

recombination in the region containing a coding variable number tandem 

repeat (VNTR) within exon 4 of the NRSF gene that is tagged by the rs2227902 

SNP (Miyajima et al., 2008b) (Figure 3.3B), shown from our genetic association 

to be significantly correlated with memory performance in patients with newly 

diagnosed epilepsy (Table 3.5 and 3.6). LD patterns across the BDNF and NRSF 

genes in this modest sample showed no major differences in comparison to 

those generated using data for the HapMap CEU cohort (Figure 3.2 and 3.3), 

eliminating the possibility of population stratification in our model. 

 

3.3.4 Location of associated SNPs suggests a regulatory function  

Of the seven SNPs identified as being important for memory processing 

in adults with newly diagnosed epilepsy, five of these (NRSF rs1105434; and 

BDNF rs1491850, rs12273363, rs2030324 and rs11030094) were located in 

non-coding regions of the genome. To explore the potential functionality of 

these non-coding SNPs we uploaded them into HaploReg V2, an online resource 

compiling information relating to epigenetic signatures, transcription factor 

binding sites (TFBS), regulatory motifs and expression quantitative trait loci 

(eQTLs) relating to an expanded list of markers based on dbSNP-137 (Ward and 

Kellis, 2012).   To     minimise     the    background    noise    generated    through  
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Figure 3.2. Linkage disequilibrium (LD) and haplotype analysis of BDNF markers in newly-

diagnosed epilepsy patients. Haplotype block structure of the BDNF gene indicating strong LD 

(red squares) based on D′ estimates calculated from 82 individuals with newly -diagnosed epilepsy. 

Haplotype blocks, represented by a black triangular border, were determined using 95% 

confidence intervals proposed by Gabriel et al. (2002) which defined a single block for the BDNF 

gene. Individual haplotypes making up the BDNF haplotype block are depicted above the LD plot 

and are compared to haplotype frequencies present in the HapMap CEU cohort. Haplotypes with a 

minor allele frequency of 0.05 or above were included. Haplotype structure did not significantly 

differ between the two cohorts (P=0.74, chi-square test; X2). LOD; log of the likelihood odds ratio, a 

measure of confidence in the D’ value.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BDNF Haplotypes
Frequency P-Value

SANAD CEU (X2)

A T T G C A G G T T T C C G A C 0.38 0.35 0.74

G T C G G A G A T C A C T A G T 0.24 0.27

G C T A C G C G C T A G T G G C 0.17 0.20

G T C G C A G A T C A C T A G T 0.07 0.08

G T T G C A G G T T T C C G A C 0.07 0.05

High D’ 

High D’/Low LOD

Low D’

3’                                                                                                                           5’
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Figure 3.3. Linkage disequilibrium (LD) and haplotype analysis of NRSF markers in 
newly-diagnosed epilepsy patients. A, Haplotype block structure of the NRSF gene in the 
SANAD cohort (top) and the HapMap CEU cohort (bottom) indicating low LD and possible 
recombination sites (white squares) based on D′ (left) and r2 (right) estimates. Haplotype 
blocks, represented by a black triangular border, were determined using 95% confidence 
intervals proposed by Gabriel et al. (2002) which defined a single block for the NRSF gene. A 
similar pattern of LD was observed between the two study cohorts. B, LD analysis in HapMap 
CEU cohort using alleles captured through haplotype-tagging indicates two haplotype blocks 
and strong LD over the region.  
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computational predictions, HaploReg only reports the intersection of SNPs with 

regulatory motifs which pass the stringent threshold (P < 4x10-8) of a position 

weight matrix (PWM); probabilistic representations of signals in DNA or 

protein sequences which can be used to model approximate patterns of DNA-

protein or protein-protein interactions (Ward and Kellis, 2012). Interestingly, 

using this web-base tool, allele-specific changes in the PWM scores for the most 

enriched discovered motif for NRSF was identified for the BDNF rs1491850 

promoter SNP (http://www.broadinstitute.org/mammals/haploreg/detailv2. 

php). In addition, the intronic NRSF rs1105434 SNP which is located 30 bp 

upstream of an alternative exon within the NRSF gene termed exon N (Figure 

3.1), which encodes a truncated protein sNRSF, alters the PWM scores for 

several regulatory motifs including that of the Yin Yang 1 (YY1) transcription 

factor which has recently been identified as playing a role in intron-mediated 

enhancement of human ubiquitin C gene expression and modulation of its 

splicing efficiency (Bianchi et al., 2013). Computational modelling of SNP-

associated changes in PWM scores for a discovered TFBS motif, such as NRSF 

and YY1 in this case, highlight regions of potential perturbation in the 

regulation of gene expression through altering transcription factor binding and 

alternative splicing. We also examined the influence of the SNPs identified as 

being significantly associated with cognitive function on eQTL patterns using 

data accessed from the Genevar (Gene Expression Variation) suite, see section 

2.2.6.2 (Stranger et al., 2012). BDNF and NRSF gene expression levels for 

individuals in the HapMap CEU population were correlated with matched SNP 

genotype data for the same study cohort, Figure 3.4. SNP-gene eQTL data was 

not available for the BDNF rs2030324 marker, therefore data was inferred from 

http://www.broadinstitute.org/mammals/haploreg/detailv2.%20php?query=&id=rs1491850�
http://www.broadinstitute.org/mammals/haploreg/detailv2.%20php?query=&id=rs1491850�
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the htSNP (r2=1) rs10767665. The NRSF rs1105434 SNP, identified in our 

cross-sectional analysis to be significantly associated with delayed recall scores 

on the Rey AVLT task and to modify the PWM score for the YY1 Transcription 

factor from our in silico analysis, was shown to significantly affect NRSF gene 

expression levels (Figure 3.4, P<0.045; presence of minor allele correlated with 

higher expression levels). A trend was observed for BDNF rs1491850 and 

rs12273363 also associated with the Rey AVLT task in our cross-sectional and 

longitudinal analyses, respectively, with BDNF gene expression levels however 

these did not reach significance (P=0.57 and 0.55, respectively). No significant 

correlations between NRSF genotype and BDNF expression levels, or vice versa, 

were found for any of the markers addressed in this study (data not shown, 

with the exception of NRSF rs2227902 on BDNF expression, Figure 3.4H, see 

section 3.3.5). These findings support a potential role for the NRSF and BDNF 

cognitive variants, identified from our genetic association analysis to influence 

memory function in patients with newly-diagnosed epilepsy, in modulating the 

expression levels of their corresponding genes; both of which have previously 

been implicated in normal and abnormal cognition (Miyajima et al., 2008a, 

Honea et al., 2013, Voineskos et al., 2011, Lu et al., 2014). 
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Figure 3.4. Effects of NRSF and BDNF cognitive variants on gene expression levels. 

Expression quantitative trait (eQTL) plots for BDNF (A-D) and NRSF (E-G) gene expression 

levels, for the HapMap CEU population plotted against genotypes of the BDNF rs11030094 (A), 

rs12273363 (B), rs2030324 (C) and rs1491850 (D), and NRSF rs1105434 (E), rs2227902 (F) 

and rs3796529 (G) SNPs shown to be significantly associated with cognitive function in patients 

with newly diagnosed epilepsy. NRSF rs2227902 was also plotted against BDNF expression (H); 

see section 3.3.5. Plots represent AA/Aa/aa, where ‘A’ is the wild type allele and ‘a’ the variant 

allele. a Data inferred from haplotype-tagging SNP rs10767665 which is in complete linkage 

disequilibrium (LD) (r2=1) with rs2030324. *P < 0.05. Plots were obtained from the Genevar 

portal, version 3.3.0. Empirical P-values (Pemp) represent permutated data controlling for the 

number of genetic variants per gene and in LD. [Figure presented on opposite page]. 
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3.3.5 Association of NRSF-BDNF composite genetic model with Rey AVLT 

(delayed) scores 

We have previously shown that the major allele of NRSF rs2227902 (G) 

is associated with reduced cognitive performance in the elderly (Miyajima et al., 

2008b). To determine its effect on cognition in adults with newly-diagnosed 

epilepsy, we correlated the number of rs2227902 risk alleles with delayed 

recall Rey AVLT scores as these were shown to be significantly associated in our 

longitudinal  analysis   (P=0.02,   Table 3.6).   Figure 3.5A illustrates a similar 

trend to that observed in the ageing population, with individuals homozygous 

for the wild type (WT) allele deteriorating to a significantly (P=0.014, unpaired 

t-test) greater extent than individuals possessing at least one copy of the minor 

allele in terms of delayed recall in the Rey AVLT. Interaction between the 

rs2227902 marker and the BDNF rs6265 marker has also been described 

previously (Miyajima et al., 2008b). This was therefore assessed in our dataset. 

A composite-genotype model was used in order to determine association 

between the cross-sectional and longitudinal cognitive test scores with the sum 

of risk alleles for the rs2227902 and rs6265 markers.  The WT allele (G), which 

tags a 5-copy coding VNTR within exon 4 of the NRSF gene, was considered to 

be the risk allele for rs2227902, whereas the minor allele (Met66-A) was 

considered the risk allele for rs6265 (Miyajima et al., 2008b, Miyajima et al., 

2008a). Linear regression analysis showed that the change in delayed recall in 

Rey AVLT in the longitudinal analysis was significantly associated with the 

number of risk alleles (P value=0.02; Figure 3.5B). In the previous report by 

Miyajima et al. (2008b) this interaction was shown to specifically reflect a 

haplotype containing the rs2227902 (T) marker, which tags a 4-copy variant of  
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Figure 3.5. Association of NRSF-BDNF composite-genotype with Rey Auditory Verbal 
Learning Task (AVLT) delayed recall scores over time. A, Association of NRSF rs2227902 
with Rey AVLT delayed recall scores. A/A represents individuals homozygous for the wild type 
risk allele rs2227902 (G); A/a represents individuals possessing at least 1 copy of the minor 
non-risk allele rs2227902 (T). Horizontal lines represent the mean change with standard 
deviation from baseline to 12 month reassessment scores. A lower score correlates with a 
greater reduction in memory performance. A significant decrease in test scores was observed 
between the two groups (Mann-Whitney test, P=0.014). B, Risk alleles for NRSF rs2227902 and 
BDNF rs6265 were grouped and the number of alleles scored as follows: Group 1 represents 0-1 
risk alleles, Group 2 represents 2 risk alleles in individuals that were either heterozygous for 
each SNP or homozygous for rs2227902 (G) and Group 3 represents 3-4 risk alleles. Linear 
regression analysis showed a significant difference between the groups (P=0.02). 
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the NRSF VNTR, and BDNF rs6265 (Val66-G). Individuals possessing this 

haplotype had significantly higher scores of general intelligence than those with 

one or neither of these variants, or in individuals possessing the NRSF-BDNF 

risk variants. To test the direction of this interaction in terms of risk or non-risk 

alleles predicting cognitive performance, linear regression was applied to 

different allele groupings as shown in Table 3.7. Due to the low minor allele 

frequencies of rs2227902 and rs6265, individuals were grouped by the 

presence or absence of the minor alleles. Data were controlled for age, sex and 

epilepsy type by covarying their effects. Consistent with an additive interaction 

between the rs2227902 and rs6265 ‘non-risk’ alleles in determining higher 

cognitive performance in the elderly, our composite genotype model showed a 

positive correlation between the presence of the rs2227902(T)_rs6265(G) 

genotype and higher Rey AVLT scores in our epilepsy cohort (Table 3.7, 

P=0.01; beta-coefficient 0.31). No such interaction was observed between the 

other NRSF-BDNF groupings and cognitive test scores which again supports 

previous findings (Miyajima et al., 2008b).  

The additive interaction between NRSF rs2227902 (T) and BDNF rs6265 

(G) and its influence on cognitive performance in patients with newly-

diagnosed epilepsy (Table 3.7) and normal ageing (Miyajima et al., 2008b) may 

reflect differences in the regulation of BDNF gene expression levels along the 

NRSF signalling pathway. To try and address this, we correlated eQTL patterns 

between NRSF rs2227902 and BDNF expression levels using data from the 

HapMap CEU reference cohort. No significant differences in BDNF expression 

levels between homozygous WT and heterozygous individuals for the NRSF 

rs2227902 SNP were observed (no homozygotes for the minor allele were 
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present in the dataset; Figure 3.4H). Similarly, BDNF rs6265 genotype did not 

affect NRSF expression (data not shown). We were unable to address the 

additive effect of the rs2227902 and rs6265 markers on BDNF gene expression 

levels using this dataset due to restrictions on accessing the raw data files. 

 

 

Table 3.7. Association of NRSF-BDNF composite-genotype with Rey Auditory Verbal Learning 

Task (AVLT) delayed recall scores over time 

 

NRSF-BDNF Haplotype N Frequency β P-value a 

rs2227902(G)_rs6265(G) 35 50.0 -0.12 0.31 

rs2227902(G)_rs6265(A) 18 25.7 -0.13 0.30 

rs2227902(T)_rs6265(G) 12 17.1 0.31 0.01* 

rs2227902(T)_rs6265(A) 5 7.1 -0.01 0.97 
 

 
Note: a Linear regression model for association between the NRSF marker rs2227902 and the 

BDNF marker rs6265 with Rey AVLT delayed recall scores over time. Major allele of NRSF, 

rs2227902 (G), and minor allele of BDNF, rs6265 (A), were considered risk alleles. Negative β 

scores indicate that the presence of risk alleles (or absence of non-risk alleles) correlates with 

lower test scores. Positive β scores indicate that the presence of non-risk alleles (or absence of 

risk alleles) correlates with higher test scores. Abbreviations: AVLT, Auditory Verbal Learning 

Task; β, beta coefficient.  
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3.4 Discussion 

Cognitive dysfunction has been reported in people with newly-diagnosed 

epilepsy. These individuals are naïve to the long-term effects of AED treatment 

and the cumulative effects of recurrent seizures, factors implicated in disease-

associated cognitive impairments (Taylor et al., 2010, Hermann et al., 2006, 

Park and Kwon, 2008), suggesting the involvement of other intrinsic and/or 

environmental influences. In this study, we provide preliminary evidence to 

suggest that variants within the NRSF and BDNF genes influence cognitive 

function in adults with newly-diagnosed epilepsy at both baseline and over the 

first year after diagnosis. Genetic effects were specific to memory-related tasks 

and psychomotor speed (longitudinal analysis). In the cross-sectional analysis 

we found significant associations for the non-redundant SNPs (based on r2 

estimates) NRSF rs1105434 and rs2227902 and BDNF rs1491850, rs2030324 

and rs11030094, with NRSF rs2227902 and rs3796529 and BDNF rs12273363 

implicated in the longitudinal model. These findings are consistent with 

previous studies showing association between the NRSF and BDNF genes and 

cognitive function in a normal ageing population and in neurological disorders. 

For example, nuclear NRSF levels have been shown to be increased in the 

normal ageing human brain, where it is thought to play a neuroprotective role 

against oxidative stress and β-amyloid protein toxicity, but reduced in 

prefrontal cortex (PFC) and hippocampal neurons in individuals with mild 

cognitive impairments and Alzheimer’s disease (Lu et al., 2014). Similarly, 

decreased serum levels of BDNF have been correlated with Alzheimer’s disease 

and associated cognitive deficits implicated in this neurodegenerative disorder 

(Laske et al., 2011). Reduced BDNF expression in the PFC and hippocampus has 
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also been observed in neuroimaging and post-mortem studies of affective 

disorders including major depressive disorder and bipolar disorder, which 

coincided with reduced brain matter, impaired spatial memory and executive 

function (Hing et al., 2012). 

All of the SNPs identified in this study have previously been associated 

with neurological disease (BDNF SNPs only) or as markers of phenotypic traits 

associated with CNS dysfunction, see Table 3.4. For example, genetic 

association studies have identified the BDNF SNPs rs1491850 and rs11030094, 

shown in our cross-sectional analysis to be associated with immediate and 

delayed recall in the Rey AVLT, respectively, to be correlated with whole brain 

and/or hippocampal atrophy and cognitive decline in Alzheimer’s disease 

(Honea et al., 2013, Laumet et al., 2010). BDNF rs1491850 has also been 

implicated in treatment response phenotypes and remission status in major 

depressive disorder (Kocabas et al., 2011, Gratacos et al., 2008). We also 

observed an association between Rey AVLT scores and the BDNF SNP 

rs2030324 which has previously been associated with speed processing in 

normal ageing (Miyajima et al., 2008a) and visual cognitive processing in 

multiple sclerosis (Weinstock-Guttman et al., 2011).  

Significant associations with delayed recall performance were also 

apparent in our longitudinal analysis with respect to NRSF rs2227902 and 

BDNF rs12273363. This may reflect a distinct regulatory pathway in the 

modulation of verbal memory in late-onset epilepsy. Dysregulation of the BDNF 

gene is well documented in neurological disorders (Chen et al., 2001, Dwivedi et 

al., 2003, Thompson Ray et al., 2011, Ray et al., 2014, Dunham et al., 2009). 

Elaborate modulation of BDNF mRNA expression is mediated by nine functional 
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promoters, some of which are influenced by cis-regulatory elements (Pruunsild 

et al., 2011, Hing et al., 2012). One such element, BE5.2, which contains the non-

coding SNP rs12273363, implicated in memory performance in our longitudinal 

assessment, has been shown to differentially regulate BDNF promoter IV 

activity in a stimulus-inducible, allele-specific and tissue-dependent manner 

(Hing et al., 2012). This correlates with previous findings of allele-specific 

differences in pro-BDNF density in post-mortem tissue from the Stanley 

Foundation Neuropathology Consortium brains (for schizophrenia, major 

depressive disorder, bipolar disorder and matched control subjects) in which 

the minor allele of rs12273363 was associated with reduced hippocampal 

expression (Dunham et al., 2009). Association between NRSF rs3796529 and 

psychomotor speed was also found in our longitudinal study however this did 

not withstand correcting for covariate effects.  

The location of five of the seven associated SNPs from our analysis 

within promoter or intronic regions of the genome is suggestive of a regulatory 

role. Several studies have shown enrichment of disease-associated SNPs within 

tissue-specific enhancers (Bhandare et al., 2010, Ward and Kellis, 2012, Ernst et 

al., 2011, Gerasimova et al., 2013, Rhie et al., 2013). Polymorphisms within 

regulatory elements can alter transcription factor binding motifs and thus the 

expression of a gene in part through modulation of signal transduction 

responses in both a tissue-specific and stimulus-dependent manner. A recent 

study demonstrated allele-specific transcription factor binding affinities using a 

panel of disease-associated SNPs (Butter et al., 2012), providing further insight 

into the molecular mechanisms by which non-coding SNPs may exert their 

effect on gene regulation. To address the potential function of the five 
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associated non-coding SNPs identified in this study, we uploaded these markers 

into the web-based platform HaploReg V2 which can be used to predict the cell-

specific chromatin state, mammalian conservation and effect on regulatory 

motifs for a particular marker (Ward and Kellis, 2012). The BDNF rs1491850 

promoter I SNP was identified as modifying the genome-wide enriched NRSF 

motif, measured by a change in the PWM score. This is of interest as it may 

potentiate differences in NRSF binding affinities to BDNF promoter I, a 

validated NRSF binding site in rodents (Timmusk et al., 1999), resulting in 

changes in BDNF gene expression. NRSF modulation of BDNF promoter activity 

is discussed further in section II of this chapter. Furthermore, analysis of the 

influence of these SNPs on NRSF and BDNF gene expression levels were also 

addressed using eQTL data from Genevar 3.3.0 (Yang et al., 2010). The intronic 

NRSF rs1105434 SNP was shown to be significantly associated with NRSF 

expression levels in the HapMap CEU reference cohort, with the minor allele 

correlating with higher expression levels (Figure 3.4E). The intronic location of 

this SNP 30 bp upstream of NRSF exon N which encodes the truncated sNRSF 

protein suggests that it may function as a cis-acting modulator of alternative 

splicing (Hull et al., 2007, Fu and Ares, 2014). This is supported by the presence 

of a sequence motif for the bivalent DNA-RNA binding protein YY1 which has 

recently been implicated in modulating splicing efficiency and intron-mediated 

enhancement of gene expression (Bianchi et al., 2013). Different alleles of this 

marker may therefore alter the binding affinities of sequence-specific binding 

factors such as YY1 which may be important for controlling context-dependent 

expression of the NRSF gene, an important mechanism in neuronal plasticity as 



 

143 
 

suggested from our studies on isoform usage following seizure induction 

(Spencer et al., 2006). 

The BDNF SNP rs6265, which encodes a missense mutation in the only 

coding exon of the BDNF gene, has been extensively studied in the field of 

cognition, with many publications supporting its role in the regulation of 

cognitive function. The first publication investigating such a role reported that 

the minor rs6265 (Met66-A) allele, defined in this current study as the risk 

allele, impaired human hippocampal activation and activity-dependent 

secretion of BDNF and reduced delayed episodic memory (Egan et al., 2003). 

Our study did not find a direct association between rs6265 and cognitive 

function in epilepsy patients. However, when this SNP was analysed in 

combination with NRSF rs2227902 based on the previous finding of an additive 

interaction between these two polymorphisms in age-related cognitive function 

(Miyajima et al., 2008b), the number of risk alleles was inversely correlated 

with memory performance over time (Figure 3.5B). Linear regression analysis 

of the different groupings of these two SNPs based on the presence or absence 

of the risk or non-risk alleles showed that the genetic association was 

significant in relation to a haplotype containing the non-risk alleles NRSF 

rs2227902 (T) and BDNF rs6265 (Val66-G), which correlated with higher Rey 

AVLT test scores as indicated by the positive beta coefficient value (Table 3.7, 

P=0.01; β=0.31). This is consistent with previous findings in the elderly cohort 

suggesting that this allelic combination may improve cognitive performance or 

slow the rate of cognitive decay over individuals possessing the proposed risk 

variants which may predict risk for more rapid cognitive decline over time, as 

demonstrated in BDNF rs6265 (Met66-A) carriers relative to rs6265 (Val66-G) 
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homozygotes in Alzheimer’s disease (Lim et al., 2014). In mature CNS neurons, 

BDNF regulates higher cognitive processes through elaboration and refinement 

of neuronal circuitries and modulation of synaptic plasticity and hippocampal 

long-term potentiation (LTP), a process central to memory and learning 

(Bramham and Messaoudi, 2005, Bramham, 2008). Reduced levels of neuronal 

and circulating BDNF have been linked to cognitive impairments in several 

neurological conditions suggesting that dysregulation of this gene may be 

important in neurological dysfunction. The NRSF rs2227902 (T) non-risk allele 

is in LD with a 4-copy coding VNTR within the NRSF gene may reduce the 

binding efficiency of the NRSF protein to its target genes, such as BDNF, altering 

their expression levels relative to the 5-copy VNTR which is tagged by the 

proposed risk variant of this SNP (Miyajima et al., 2008b). To address this 

proposed mechanism, the rs2227902 genotype was correlated with BDNF 

expression levels based on data from lymphoblastoid cell lines derived from 

individuals of the HapMap CEU cohort. There was no significant difference in 

eQTL expression patterns based on the rs2227902 genotype in this reference 

cohort (Figure 3.4H). Nor was there an effect of BDNF rs6265 genotype on 

NRSF levels (data not shown). This may reflect several factors including cell-

specificity (lymphoblast cells may not be an appropriate model for addressing 

interactions associated with cognition); age-related or disease-associated 

interactions as suggested from our previous work in the elderly and epilepsy 

cohorts and the additive nature of this polymorphism with the rs6265 marker 

which could not be addressed in this dataset.   

Support for the NRSF-BDNF pathway as a potential mechanism in 

cognitive dysfunction associated with neurological disorders comes from 
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studies on Huntington’s disease, were it has been shown that WT but not 

mutant huntingtin protein regulates BDNF transcription through cytoplasmic 

sequestering of NRSF (Zuccato et al., 2003). Furthermore, genetic variants of 

the REST-interacting LIM domain protein (RILP/Prickle-1), an important 

candidate involved in the nuclear translocation and repressive functioning of 

NRSF (Shimojo and Hersh, 2006), have been associated with autosomal-

recessive progressive myoclonus epilepsy-ataxia syndrome, the symptoms of 

which include seizures and cognitive decline (Bassuk et al., 2008). Epigenetic 

parameters may also be important in this regulatory network as suggested by 

interaction of the NRSF-silencing complex with the histone demethylase SMCX, 

a gene implicated in X-linked mental retardation and epilepsy (Tzschach et al., 

2006), resulting in chromatin remodelling and downstream regulation of NRSF 

target genes including BDNF. Other chromatin remodelling proteins associated 

with this silencing complex have been implicated in memory impairment, 

including histone deacetylase 2 (HDAC2) (Guan et al., 2009, Graff et al., 2012) 

and methyl CpG binding protein 2 (MeCP2) which is mutated in Rett syndrome 

resulting in NRSF/CoREST-mediated repression of BDNF expression 

(Abuhatzira et al., 2007). Further support comes from evidence that glycolytic 

inhibitor 2-deoxy-D-glucose modulation of the NRSF-ctBP (C-terminal binding 

protein) complex enhances the repressive chromatin environment surrounding 

the BDNF gene, consequently blocking epileptogenesis (Hu et al., 2011b, 

Garriga-Canut et al., 2006). In addition, investigations into functional 

abnormalities observed in patients with Korsakoff’s syndrome, a neurological 

disorder caused by thiamine deficiency, found a strong correlation between 

reduced glycolysis and delayed memory performance (Paller et al., 1997). Both 
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NRSF and BDNF have been linked to impairments of neurogenesis in this 

disorder (Tateno and Saito, 2008). Collectively these studies support a role for 

dysregulation of the NRSF-BDNF pathway in cognitive decline associated with 

neurological disease.  

 

3.5 Summary 

In summary, the data presented supports a trend towards association of 

polymorphic variants within the NRSF and BDNF genes and memory-related 

tasks in patients with a new diagnosis of epilepsy. These associations reached 

statistical significance in both the cross-sectional and longitudinal assessment 

suggesting the influence of genetic background on the susceptibility to memory 

decline in adults with new onset epilepsy. These findings are consistent with 

previous literature in the field but should be considered with caution, not least 

because of the small sample size and lack of a matched control group. In 

addition, potentially confounding variables including the influence of AED 

exposure or possible practice effects associated with repeat application of 

cognitive tests could not be accounted for. Although replication in a larger study 

sample is required, these observations lend weight to the known involvement of 

NRSF-BDNF markers in the modulation of cognitive performance in normal 

ageing and also in neurological and psychiatric disorders.  
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Part II:  Complex promoter usage and transcriptional regulation 

of the human BDNF gene in response to cocaine 

3.6 Introduction 

In the previous section a number of promoter and intronic SNPs were 

identified within the NRSF and BDNF genes that associated with cognitive 

performance in memory-related tasks in patients with newly-diagnosed 

epilepsy. The location of these SNPs within non-coding regions of the genome 

indicates a regulatory function which may act through altering gene regulatory 

sequences as suggested from in silico analysis of transcription factor biding site 

(TFBS) perturbations, outlined in section 3.3.4, or to modify post-transcriptional 

mechanisms. Quantification of the levels of circulating BDNF or its expression 

and/or function within the brain has been investigated as a potential biomarker 

in a number of neurological conditions including Alzheimer’s disease, mild 

cognitive impairments, schizophrenia and mood disorders (Laske et al., 2011, 

Thompson Ray et al., 2011, Lim et al., 2014). Although several studies support a 

role for aberrant BDNF-signalling in these conditions or associated cognitive 

defects, the mechanisms involved remain unclear. To better understand the 

regulatory mechanisms operating at the human BDNF gene and potentially 

involved in disease-associated dysregulation of this neurotrophic factor, the in 

vitro effects of cocaine, a known modulator of BDNF expression in animal and 

cell line models (Chandrasekar and Dreyer, 2009, Sadri-Vakili et al., 2010, Le 

Foll et al., 2005, Liu et al., 2006, Graham et al., 2007, Kumar et al., 2005, Lepsch 

et al., 2009), were addressed in the human neuronal cell line SH-SY5Y. Cocaine 

was selected for cellular challenge as it provides a robust signal for studying 
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stimulus-induced activation of neuronal pathways linked to mood, psychosis, 

cognition and cellular stress in cell lines (Vasiliou et al., 2012, Pihlgren and 

Boutros, 2007, Spronk et al., 2013), which can be difficult to model in vitro.  

The human BDNF gene is extremely complex, comprising eleven exons 

and nine functional promoters which initiate tissue-specific and stimulus-

inducible transcription of distinct mRNA transcripts (Pruunsild et al., 2007). At 

least 34 alternative BDNF mRNA transcripts are encoded from the BDNF gene 

locus through alternative splicing (Baj and Tongiorgi, 2009, Pruunsild et al., 

2007). Differential expression of these BDNF transcripts is initiated through its 

alternative promoters which have been shown to be regulated by several 

mechanisms including DNA methylation, histone modifications and 

transcription factor binding (Huang et al., 2002, Tsankova et al., 2006, 

Abuhatzira et al., 2007, Lubin et al., 2008, Tabuchi et al., 2002a, Lipsky et al., 

2001, Bredy et al., 2007, Martinowich et al., 2003, Pruunsild et al., 2011). 

Although transcriptional regulation of BDNF is well documented the majority of 

studies have focussed on the rodent gene, specifically transcripts 1-4 owing to 

the incomplete annotation of more recently defined alternative transcripts of 

this gene (Liu et al., 2006, Aid et al., 2007). Transcriptional regulation over the 

entire BDNF gene locus is yet to be fully elucidated.   

Several BDNF promoters have been shown to be under the transcriptional 

control of NRSF. Specifically, modulation of rodent BDNF promoters I, II and IV 

by NRSF or its isoforms have previously been documented (Tabuchi et al., 

2002b, Tabuchi et al., 1999, Tian et al., 2009, Timmusk et al., 1999, Abuhatzira 

et al., 2007, Palm et al., 1998, Hara et al., 2009) and promoter I and II of the 

human gene (Hara et al., 2009); however, to my knowledge, differential NRSF-
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mediated regulation of human BDNF promoter utilisation has not been 

previously addressed. NRSF-mediated regulation of BDNF expression has been 

associated with both glutamatergic signalling (Timmusk et al., 1999, Tian et al., 

2009) and associated disease pathways, including rodent models of epilepsy, 

Huntington’s disease and Rett syndrome (Abuhatzira et al., 2007, Zuccato et al., 

2003, Spencer et al., 2006). Furthermore, as discussed in section I of this 

chapter, the NRSF-BDNF pathway may also play a contributory role to cognitive 

impairments associated with new-onset epilepsy, assessed through genetic 

association, implicating this regulatory network in several disease pathways. To 

better understand the role of NRSF modulation of human BDNF transcription 

using a human model of neurological dysfunction, the in vitro effects of cocaine 

on the binding of NRSF to potential NRSEs within the BNDF gene locus were 

explored using chromatin immunoprecipitation (ChIP), which was correlated 

with expression profiling of the alternatively spliced BDNF mRNAs encoded 

from distinct promoters. 
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3.7 Aims 

 Bioinformatic analysis of NRSEs spanning the human BDNF gene and their 

special relation to the different BDNF proximal promoters  

 Characterise BDNF mRNA expression in human SH-SY5Y neuroblastoma 

cells and investigate differential promoter utilisation in response to cocaine 

treatment 

 Address NRSF binding of the well characterised and/or transcriptionally 

active BDNF promoters in SH-SY5Y cells by ChIP    

 Correlate BDNF expression data with NRSF promoter occupancy and histone 

modifications  

  



 

151 
 

3.8 Results 

3.8.1 BDNF transcripts are modulated in a time-dependent manner in SH-

SY5Y cells in response to cocaine 

In accordance with the most recently defined nomenclature for BDNF 

(Pruunsild et al., 2007), Figure 3.6 provides a schematic representation of the 

human BDNF gene locus illustrating the mRNA transcripts addressed in this 

study. PCR primers were designed to cross exon-intron boundaries for each 

transcript; the forwards primer targeting the 5’ exon and the reverse primer 

targeting the common 3’ exon (exon IX). Primer details are listed in Table 2.1 of 

the Methods section. SH-SY5Y cells were used in this study due to their neuronal 

phenotype and endogenous expression of BDNF. Transcripts containing exons I, 

II, IV, V, VI and IX have been previously characterised in SH-SY5Y cells, with 

exons II, IV and VI identified as being common across studies (Garzon and 

Fahnestock, 2007, Baj and Tongiorgi, 2009). In line with these reports, 

moderate to high levels of mRNA transcripts II, IV, VI and IX were observed 

under basal conditions, Figure 3.7A-B. Exons I, III, V, VII and VIII were 

undetectable under all conditions tested. This coincides with data from the 

literature for exons III, VII and VIII (Garzon and Fahnestock, 2007, Baj and 

Tongiorgi, 2009). Discrepancies in the expression of exon I in SH-SY5Y cells has 

previously been reported and low levels of exon V has also been observed (Baj 

and Tongiorgi, 2009). Differences in expression patterns may be the result of 

differing culture conditions used across studies.  

Acute cocaine treatment can induce differential BDNF mRNA expression 

in the rodent brain (Liu et al., 2006, Le Foll et al., 2005). The effects of cocaine 

on the expression of human BDNF transcripts was therefore addressed using a  
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Figure 3.6. BDNF gene locus. Schematic representation of human BDNF gene structure and its alternative splice variants according to Pruunsild et al. (2007). Black 
boxes represent exons; connecting lines introns, with arrow heads representing the direction of transcription. Coding sequence (cds) is marked by thicker black boxes 
and * mark in-frame ATG codons that could be used as alternative start sites for translation. Green boxes represent CpG islands; red boxes promoter sequences analysed 
in our ChIP assays with numbers below stating the distance in bp between neighbouring promoter sequences. Grey boxes represent NRSF binding from ENCODE ChIP-
seq data; the darkness of the box is proportional to the maximum signal intensity for NRSF binding observed in any of the cell lines tested. H3K4me3 (ENCODE), 
H3K9me3 and H3K4me2 (Barski et al., 2007) histone methylation signals are displayed as peaks corresponding to signal intensity. Image generated to scale using the 
UCSC Genome Browser (http://genome.ucsc.edu/index.html). 

http://genome.ucsc.edu/index.html�


 

153 
 

cell line model as described   in   section 2.2.3.4. Cells were subjected to 24 hour 

serum-starvation prior to drug treatment to promote cell-synchronisation 

(Zetterberg and Skold, 1969, Kramer et al., 2010). Therefore drug vehicle control 

conditions (sterile-filtered d.H2O) also reflect changes in serum concentration. 

Drug treatments were performed at a final concentration of 10 µM cocaine in 

accordance with previous studies in the lab (Vasiliou et al., 2012). To obtain 

signatures relating to the direct mechanisms of drug action, relatively short time-

points of 1 and 4 hours for drug treatments were used, with a subset also profiled 

at 24 hours for comparison. RT-qPCR analysis (see section 2.2.5.7) showed BDNF 

II, which was undetectable under control conditions at 1 hour and under all 

conditions tested at 4 and 24 hours, to be induced following 1 hour cocaine 

treatment, Figure 3.7B. BDNF IX was also significantly up-regulated in treated 

cells versus controls following 1 hour exposure to cocaine (fold change, 12.84; SD, 

0.70; ***P<0.001), Figure 3.7C. Transcripts IV and VI were not significantly 

affected by cocaine treatment at 1 hour. At 4 hours post-treatment transcripts IV, 

VI and IX were significantly up-regulated 8.11- (SD, 0.95; **P<0.01), 9.09- (SD, 

0.92; *P<0.05) and 3.53-fold (SD, 0.35; *P<0.05), respectively (Figure 3.7C). Up-

regulation of BDNF IV following 4 hour treatment with cocaine is consistent with 

in vivo expression of this conserved transcript in the rodent brain in response to 

acute cocaine administration at this time-point (Liu et al., 2006). Conversely, 

prolonged exposure of SH-SY5Y cells to cocaine resulted in down-regulation of 

BDNF IV (fold change, 4.57; SD 0.46; ***P<0.001), which  supports previous 

findings in human neuroblastoma cells showing reduced expression of  total  

BDNF mRNA at 24 hours post-treatment (Feng et al., 2006). BDNF VI and IX were 

unaffected at 24 hours cocaine exposure relative to untreated cells, Figure 3.7C.
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Figure 3.7. Characterisation of BDNF mRNA expression in human-derived SH-SY5Y 
neuroblastoma cells following cocaine treatment. A, PCR analysis of BDNF mRNAs under 
basal conditions. SH-SY5Y cells express BDNF transcripts II (see B), IV, VI and IX. B, BDNFII was 
undetectable under vehicle control conditions at 1 hour but was induced by cocaine. Expression 
is displayed as fold change relative to ACTB. C, Expression profiling of BDNF transcripts 
following treatment with 10 µM cocaine at 1, 4 and 24 hours. Bars represent the average fold 
change in BDNF expression of treated cells versus control cells analysed using the Delta-Delta Ct 
method. Each sample was measured in triplicate and normalised to ACTB expression. RT-qPCR 
data is representative of 3 biological replicates. Error bars represent the SD for relative fold 
change between experimental replicates. Significant changes in expression between treated and 
control cells were determined using a two-tailed student t-test. * P<0.05, ** P<0.01, *** P<0.001. 
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3.8.2 Cocaine induces co-ordinate and differential regulation of distinct 

BDNF promoter regions by NRSF 

NRSF has previously been shown to regulate rodent BDNF promoter I, II 

and VI activity-dependent gene transcription (Tabuchi et al., 2002b, Tabuchi et 

al., 1999, Tian et al., 2009, Timmusk et al., 1999, Abuhatzira et al., 2007, Palm et 

al., 1998, Hara et al., 2009). To explore NRSF-mediated regulation of the human 

BDNF gene locus, NRSF occupancy of different BDNF promoters was addressed 

under control conditions and following drug challenge with cocaine; a known 

modulator of NRSF (Chandrasekar and Dreyer, 2009) and BDNF expression 

(Sadri-Vakili et al., 2010, Le Foll et al., 2005, Liu et al., 2006, Graham et al., 2007, 

Kumar et al., 2005). Potential NRSF binding sites over the human BDNF gene 

locus were identified using ENCODE ChIP-seq data for transcription factor 

binding (The ENCODE Project Consortium, 2011) and the rVista portal, a web-

based tool for analysing the regulatory potential of evolutionarily conserved 

regions of non-coding DNA through comparative genomics and transcription 

factor binding site predictions (Loots and Ovcharenko, 2004). These are 

represented in Figure 3.6 and Table 3.8. ChIP was carried out in SH-SY5Y cells 

under control conditions and following 10 µM cocaine treatment at 1, 4 and 24 

hours (Figure 3.8A) to correlate with gene expression data. The same passage 

cells were used across all experiments. ChIP was performed using anti-H3, a 

positive control for immunoprecipitation efficiency across samples; anti-NRSF 

(H-290-X), raised against the amino-terminal of human NRSF and therefore 

targets all isoforms; and an IgG control antibody for assessment of non-specific 

background noise. PCR primers used to address NRSF binding of the different 

BDNF promoters are detailed  in  Table 2.1.  The distance between  the  promoter  
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Table 3.8. Predicted NRSF regulation of the human BDNF gene 

 
 
Note: Gene nomenclature is according to Pruunsild et al. (2007). Position is the location of 
predicted NRSF binding sites (identified using ENCODE ChIP-seq data or the rVista Transfac 
database) relative to the transcription start site; negative and positive values indicate upstream 
and downstream positions, respectively. Bold font indicates sequence variation from the 
canonical NRSE (Wu and Xie, 2006) displayed under the heading NRSF binding site. BDNF 
rs1491850 (A/G) SNP is highlighted grey.  
 
 

 

  

Transcript NRSF binding site (NRSE) 

  T  AG    A CG    G 
TTCAGCACCNNGGACAGCGCC 

 

Position 
(bp) 

Validated NRSF target  

BDNF I 
TCCAGTACCATACACGTAAAA 

TTCAGAACACCAGACAACCCT 

-6,111 
-4,008 

Rat cortical neurons and glial cells, 
rat brain, human HeLa cervical 
cancer cell line  

BDNF IIb TTCAGCACCTTGGACAGAGCC +103 
 

Rodent brain, rat cortical neurons 
and C6 glioma cells, mouse Neuro-2A 
neuroblastoma cells,  human HeLa 
cervical cancer cell line 

BDNF III TTCTCCACCGCCTCCAGCCGC +363 - 

BDNF IV TTCACCGCGGAGAGGGCTGCT +33 Whole brain tissue from new born 
mice 

BDNF V TCCTGCACTACGGAGCTTGCG +69 - 

BDNF VIb AGCAGCACCGCGACGGGGACC +243 - 

BDNF VII GTCAGGACCCTCGACAGCTCT -125 - 

BDNF IXabcd ENCODE binding +850 - 
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regions tested are outlined in Figure 3.6. Sonication of the chromatin samples 

yielded fragments ranging between 100 - 1,500 bp, see Appendix 2. Due to the 

close proximity of promoters IV and VI, located 989 bp apart, these regions were 

analysed as a single cluster (termed BDNF promoter IV) as previously described 

(Baj and Tongiorgi, 2009). MIR137 NRSF binding sites I (chr1:98511689-

98512088) and II (chr1:98513921-98514133) located within the MIR137 gene 

locus were respectively used as a negative and positive control for NRSF binding 

within SH-SY5Y cells, Figure 3.8B. They are located 1,833 bp apart and so act as 

an internal control for specificity of NRSF enrichment at closely situated binding 

sites. See Chapter 4 for further details of NRSF regulation of the MIR137 locus. 

Under control conditions at 1 hour treatment, strong signals for NRSF 

binding were observed at BDNF promoters II, IV and IX. In response to cocaine, 

binding was lost at promoters II and IV with no effect on promoter IX (Figure 

3.8A). Typical of NRSF predominantly functioning as a transcriptional repressor, 

loss of binding at promoter II correlated with induction of BDNF II mRNA 

expression a 1 hour (Figure 3.7B). Furthermore, NRSF occupancy of BDNF 

promoter II at 4 and 24 hours under control and treatment conditions 

corresponded with undetectable levels of this transcript by RT-qPCR (data not 

shown). Loss of binding at promoter IV also correlated with a significant increase 

in the levels of transcripts IV and VI expressed from this region at the 4 hour time 

point, whereas increased NRSF signal at 4 hours correlated with significant 

down-regulation of transcript IV at 24 hours (Figures 3.7C), again supporting a 

role for NRSF in transcriptional repression at this promoter. At 24 hours cocaine 

treatment,  NRSF  occupancy  of  BDNF  promoter  IV  was  comparable  to  control 

levels  suggesting  that  NRSF  modulation  of  this  region  (and promoter II)  is an  
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Figure 3.8. NRSF modulation of BDNF promoters following cocaine treatment in human SH-
SY5Y cells. A, ChIP analysis of NRSF binding to BDNF promoter regions under control conditions 
and following treatment with 10 μM cocaine for 1, 4 and 24 hours. Histone H3 antibody (H3 +ve) 
was included as a positive control for the immunoprecipitation (IP) and IgG was included as a 
control for non-specific background binding. Expression is with respect to RT-qPCR data for the 
corresponding BDNF transcripts (see Figure 3.7B-C); - / - - / +(-) / + / +(+) / ++ represents no / 
reduced (significant) / reduced (non-significant) / basal / increased (non-significant) / increased 
(significant) expression in treated cells relative to untreated cells. B, MIR137 NRSF binding sites 
(BS) I and II were used as a positive and negative control for NRSF binding. For ChIP assays, n=1. C, 
Expression profiling of NRSF in response to 10 µM cocaine. Bars represent the average fold change 
in expression of treated cells versus control cells analysed using the Delta-Delta Ct method. Each 
sample was measured in triplicate and normalised to ACTB expression. RT-qPCR data is 
representative of 3 biological replicates. Error bars represent the SD for relative fold change 
between experimental replicates. Significant changes in expression between treated and control 
cells were determined using a two-tailed student t-test. *** P<0.001. Differences in NRSF binding 
under control conditions likely reflect the effects of serum changes (cells cultured in low serum 
media 24 hours prior to drug treatments). 
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early response to cocaine challenge (Figure 3.8A). Under all conditions tested, 

enrichment of NRSF at BDNF promoter I was observed which correlated with 

undetectable levels of the corresponding transcript originating from this region. 

In contrast to promoters I, II and IV, transcript IX was significantly up-

regulated in response to cocaine at 1 and 4 hours despite NRSF occupancy of its 

promoter (Figure 3.7C), suggesting that mechanisms other than NRSF are 

necessary for transcriptional regulation of this transcript in response to cocaine. 

The NRSF antibody used in this study targets an epitope at the amino-terminal of 

NRSF and therefore recognises all isoforms of this protein. The presence of NRSF 

at promoter IX following cocaine treatment might alternatively reflect the action 

of the truncated variant sNRSF which is thought to exert dominant-negative 

effects over the full-length protein (Coulson et al., 2000, Shimojo et al., 1999) or 

function as a transcriptional enhancer (Spencer et al., 2006, Gillies et al., 2009). 

REST4, the rodent analogue of human sNRSF, has previously been shown to 

modulate BDNF expression. Tabuchi et al. (2002b) demonstrated that over-

expression of REST4 increased the basal transcription of a reporter gene 

construct containing a duplicated NRSE upstream of BDNF promoter I in rat 

primary cortical neurons, supporting its proposed role as a transcriptional 

enhancer. They further showed that co-expression of REST4 with NRSF resulted 

in a competitive interaction between the two isoforms which supported a 

dominant-negative effect of the truncated variant over the full-length protein 

allowing for BDNF promoter I directed gene activation. A similar mechanism may 

be operating at the human BDNF IX promoter in response to cocaine whereby the 

repressive effect of NRSF is inhibited by sNRSF, or sNRSF mediates 

transcriptional activation, resulting in up-regulation of the corresponding 
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transcript. The potential role of sNRSF can only be speculated in this model as 

there is no commercial antibody available to specifically target this isoform. 

To check whether NRSF binding of the BDNF gene locus correlated with its 

cellular expression, we quantified NRSF mRNA levels across the different 

treatment conditions (Figure 3.8C). NRSF was up-regulated in response to 

cocaine at 1 and 4 hours, however this was only significant for the earlier time-

point (fold change, 2.51; SD, 0.23; ***P<0.001). Increased NRSF expression 

coincided with increased binding at BDNF promoter IV at the 4 hour time point 

and significant down-regulation of transcript IV at 24 hours post-treatment. At 24 

hours, NRSF was down-regulated 1.1 fold relative to basal expression (SD, 0.04; 

***P<0.001). Expression of sNRSF was also addressed by RT-PCR however no 

signal was detected under all of the conditions tested (data not shown). The 

cellular levels of sNRSF are extremely low relative to the full-length protein 

(approximately 1% of total NRSF) (Palm et al., 1998) and its up-regulation in 

response to neuronal activation is often transient (Spencer et al., 2006) making it 

difficult to address the endogenous function of this isoform. Undetectable levels 

of sNRSF mRNA in this experiment may reflect differences in cell passage number 

as its expression can be detected under normal culture conditions in the SH-SY5Y 

cell line (see Appendix 3). Nevertheless, the data presented here points to a dual 

role for NRSF in the modulation of human BDNF gene expression in response to 

cocaine in both a promoter- and time-dependent manner; acting as a 

transcriptional repressor of transcripts initiating from BDNF II and IV and a 

potential activator of BDNF IX which may involve differential isoform usage. 
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3.8.3 BDNF promoters can be grouped into distinct clusters dependent 

upon their epigenetic status in response to cocaine   

Analysis of transcriptional regulation of the human BDNF gene in 

response to cocaine challenge indicated time-dependent and promoter-specific 

modulation by NRSF. Distinct promoter clustering of the BDNF gene has 

previously been reported in SH-SY5Y cells in response to cytotoxic stress (Baj and 

Tongiorgi, 2009) and likely reflects the molecular architecture surrounding the 

promoter. To further investigate the transcriptional mechanisms operating at 

these distinct promoter clusters, we investigated the relationship between 

histone modification patterns, NRSF binding and BDNF expression in cocaine 

treated and untreated SH-SY5Y cells. Specifically, we addressed trimethylation of 

histone 3 lysine 9 (H3K9me3); a repressive histone mark associated with NRSF 

occupancy of canonical (21 bp consensus sequence) and non-canonical (left and 

right half sites separated by 0 or 3-9 bp) NRSEs in the human genome (Zheng et 

al., 2009), and dimethylation of histone 3 lysine 4 (H3K4me2); an active histone 

mark enriched at, or in close proximity to, the transcription start site (TSS) of 

active gene promoters (Koch et al., 2007) and that has been shown to be 

significantly depleted at NRSEs occupied by NRSF relative to unbound NRSEs 

(Zheng et al., 2009). As predicted, signals for H3K9me3 and absence of H3K4me2, 

particularly at promoter II in the presence of NRSF occupancy, correlated with 

transcriptional silencing (promoter II at 1 hour) or repression as determined by 

gene expression profiling. Moreover, H3K4me2 signals were enriched at the 

transcriptionally permissive promoter IX across all treatment conditions tested. 

In addition, contradictory H3K4me2/H3K9me3 signals were observed at all 

promoters tested and correlated with basal or increased transcription levels 
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(Figure 3.9). The epigenetic profile of promoter IV was more variable which may 

be the result of contaminating signals from promoters (V-VII) located in close 

proximity (see Figure 3.6). Other histone modifications have been associated 

with modulation of this promoter region including histone acetylation (Sadri-

Vakili et al., 2010, Bredy et al., 2007). DNA methylation may also be important 

due to the presence of an overlapping CpG island (Figure 3.6), which is 

supported by known regulation of this promoter by the methyl CpG binding 

protein MeCP2 (Abuhatzira et al., 2007, Sadri-Vakili et al., 2010). Variation in 

histone methylation patterns across control conditions for all promoters tested 

likely reflects the effects of serum starvation which has previously been shown to 

affect H3K9me3 and H3K4me2 signals at other gene promoters which encode for 

trophic fators, such as insulin-like growth factor 1 (Sanchez et al., 2009). 
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Figure 3.9. Histone methylation of BDNF promoters in response to cocaine treatment in SH-

SY5Y cells. ChIP analysis of active (dimethylation of histone 3 lysine 4, H3K4me2) and repressive 

(trimethylation of histone 3 lysine 9, H3K9me3) histone marks at BDNF promoters II (cluster 1 

promoter), IV and IX (cluster 2 promoters) under control conditions and following 10 µM cocaine 

treatment at 1, 4 and 24 hours. Expression is with respect to RT-qPCR data for the corresponding 

BDNF transcripts (see Figure 3.7B-C); - / - - / +(-) / + / +(+) / ++ represents no / reduced 

(significant) / reduced (non-significant) / basal / increased (non-significant) / increased 

(significant) expression in treated cells relative to untreated cells. Differences in NRSF binding 

and histone marks under control conditions likely reflect the effects of serum changes (cells 

cultured in low serum media 24 hours prior to drug treatments).  
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3.9 Discussion 

BDNF is an important neurotrophic factor involved in  neurogenesis, cell 

survival and synaptic plasticity (Huang and Reichardt, 2001, Scharfman et al., 

2005, Pencea et al., 2001, McAllister et al., 1999, Ghosh et al., 1994). The 

structure of the BDNF gene is extremely complex, with differential expression 

from the locus being well documented in response to a variety of stimuli and in 

disease models. Epigenetic modifications of the BDNF gene are thought to be 

important in the aetiology of psychiatric disorders, such as schizophrenia and 

mood disorders. Support for this comes from human studies which have 

correlated increased BDNF promoter methylation with reduced circulating 

BDNF levels in patients diagnosed with bipolar disorder (D'Addario et al., 

2012), major depression (D'Addario et al., 2013) and schizophrenia (Kordi-

Tamandani et al., 2012). Post-mortem studies have also shown an inverse 

correlation between cortical BDNF expression and promoter DNA methylation 

in normal ageing (Keleshian et al., 2013) and in Alzheimer’s disease (Rao et al., 

2012). NRSF is an important mediator of epigenetic parameters through its 

interaction with a complex of co-repressor proteins resulting in chromatin 

remodelling at its target sequence. Disruption of this regulatory network has 

been associated with aberrant BDNF expression in a variety of disease models 

(Abuhatzira et al., 2007, Zuccato et al., 2003, Spencer et al., 2006). Furthermore, 

the overlapping role of NRSF and BDNF in several neuropsychiatric conditions 

suggests that inappropriate regulation of these two candidate genes along a 

common regulatory network may be important in defining neurological 

dysfunction.  
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To investigate this, we explored the effects of cocaine treatment on NRSF-

mediated regulation of the BDNF gene locus in human SH-SY5Y cells. Cocaine 

was used in this study as it has previously been shown to modulate the 

expression of both of these genes in vitro, with a recent study linking NRSF-

signalling as an important regulatory mechanism in the fine-tuning of BDNF 

expression in response to this drug (Chandrasekar and Dreyer, 2009). Cocaine 

therefore permitted manipulation of the endogenous expression of these genes 

for in vitro analysis of the NRSF-BDNF signalling pathway in response to cellular 

challenge. Gene expression and ChIP analysis pointed to a role for NRSF as both 

a transcriptional repressor and activator of the BDNF gene in a promoter-

dependent fashion. Moreover, this dual function appeared to be co-ordinated at 

distinct promoter clusters. Typical of Class I NRSF target genes which are 

maximally expressed by default upon loss of NRSF binding of their promoters 

during neuron differentiation (Ballas et al., 2005), enrichment of NRSF at 

promoters I and II (cluster 1 promoters) correlated with silencing of the 

corresponding transcripts with expression of BDNF II observed following NRSF 

dissociation from its promoter. SH-SY5Y cells are immature neuroblasts that 

maintain stem cell characteristics, which is in fitting with NRSF-mediated 

repression of neuronal gene expression in neural progenitor cells. The 

repressive function of NRSF at BDNF  promoters I and II is in agreement with 

previous studies in both human HeLa cervical cancer cells, rat glial cells and 

exogenous NRSF expression in rat cortical neurons (Palm et al., 1998, Timmusk 

et al., 1999, Abuhatzira et al., 2007, Hara et al., 2009, Tabuchi et al., 1999). 

Distinct from BDNF cluster 1 promoters, NRSF occupancy of BDNF promoters 

IV and IX (cluster 2 promoters) under control conditions correlated with basal 
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expression of the corresponding mRNAs. Similar to the NRSF ‘Class I’ 

promoters, loss of NRSF binding at promoter VI coincided with significant up-

regulation of transcripts IV and VI encoded from the region but this was only 

detected at the 4 hour time point. NRSF may play a role in maintaining the basal 

levels of these transcripts as their expression was observed under control 

conditions even in the presence of NRSF promoter occupancy. BDNF has 

previously been categorised as a Class II NRSF target gene, defined as those that 

are not maximally expressed upon NRSF dissociation from their promoters due 

to the presence of the co-repressors CoREST and MECP2 at methyl CpG sites 

within the regulatory sequence. Increased expression of Class II neuronal genes 

following dissociation of the NRSF/co-repressor complex from the NRSE site 

also requires the loss of MeCP2, mSin3 and HDAC (Ballas et al., 2005), a 

regulatory mechanism which allows for the fine tuning of neuronal gene 

expression in response to  specific stimuli. The role of NRSF at the most distal 

promoter IX is more complex and representative of the dynamic regulatory 

mechanisms associated with this epigenetic modulator. NRSF occupancy of 

promoter IX correlated with basal expression of this transcript under control 

conditions and significant up-regulation following cocaine challenge, suggesting 

that transcriptional mechanisms additional to, and distinct from, the well 

characterised repressive function of NRSF are responsible for the regulation of 

this promoter.  

Several studies have indicated that both sequence variation within NRSEs 

and the promoter architecture within which they are located may dictate the 

regulatory function of these domains upon NRSF binding. Tabuchi et al. (1999) 

demonstrated that introducing two point-mutations into the NRSE located 



 

167 
 

within promoter I of the rat BDNF gene resulted in the partial de-repression of 

this promoter in glial cells, whilst Bessis et al. (1997) showed that NRSEs 

located within 50 bp upstream or 50-250 bp downstream of a synthetic 

promoter could direct transcriptional activation of reporter gene constructs in 

rodent neuroblastoma but not fibroblast cells. In silico analysis of potential 

NRSEs located within the human BDNF gene locus through comparative 

sequence analysis of conserved TFBS identified several NRSEs within close 

proximity to BDNF IV and VI (Table 3.8). Two of these elements were located 

33 bp and 243 bp downstream of the TSS of the respective transcripts IV and VI, 

and displayed greater sequence variation than those proximal to promoters I 

and II which showed high sequence homology to that of canonical NRSEs, Table 

3.8. A computational study addressing the potential functional significance of 

sequence variation within the NRSE through precise mapping of NRSF binding 

sites using short sequence reads generated from ENCODE ChIP-Seq data, 

showed that residues 7-21 (in particular 7–9 and 12–17) were important for 

DNA binding whereas residues 1-6 were identified as being important for 

binding stability (Jothi et al., 2008). This observation is supported by the action 

of NRSF at tandem NRSEs within the CACNA1A gene in which those sites with 

high sequence identity to that of the canonical NRSE (determined by PWM 

scores), particularly within the first 6 bp, showed higher binding affinities and 

enrichment for NRSF relative to other functional NRSEs within the gene with 

lower PWM scores, determined through electrophoretic mobility shift assays 

and ChIP (Johnson et al., 2006). The biological relevance of tandem NRSE 

clusters of different sequence composition within NRSF-target genes may 

reflect their ability to differentially recruit NRSF at varying concentrations of 
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this transcription factor within the cell, which may dictate the action of NRSF as 

either a transcriptional repressor or enhancer. This would be consistent with 

our observation of the differential action of NRSF at the distinct BDNF promoter 

clusters in response to cocaine, such as repression of BDNF promoters I and II 

which both share high sequence homology with the classical NRSE originally 

defined as a repressor element (Chong et al., 1995, Schoenherr and Anderson, 

1995, Mori et al., 1992).  

Alternative NRSF isoforms may also be important in modulating the 

activity of the BDNF gene as suggested from their differential roles in regulating 

neuropeptide gene expression. The truncated variant sNRSF, or REST4 in 

rodents, which is specifically expressed in neurons or certain cancers (Palm et 

al., 1998, Coulson et al., 2000, Wagoner et al., 2010), is believed to function as a 

gene enhancer or exert dominant-negative effects over the full-length protein 

(Coulson et al., 2000, Spencer et al., 2006, Shimojo et al., 1999, Tabuchi et al., 

2002b, Gillies et al., 2009). This was demonstrated in rat cortical neurons were 

over-expression of REST4 resulted in increased basal activation of a reporter 

gene construct containing a duplicated NRSE within BDNF promoter I, 

supporting its role as transcriptional activator (Tabuchi et al., 2002b). However, 

the same study showed that over-expression of REST4 alone or in combination 

with full-length NRSF resulted in repression of this promoter region following 

neural activation with KCl. This effect was weak in relation to the repressive 

potential of the full-length protein alone suggesting that the truncated variant 

acts to competitively inhibit the action of NRSF. The ChIP antibody used in this 

study targets all isoforms of NRSF therefore the action of NRSF at promoter IX 

could reflect sNRSF however this could not be specifically addressed as there is 
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no commercial antibody available for specifically targeting the truncated 

variant. RT-PCR analysis was unable to detect sNRSF which is known to be 

expressed at extremely low levels within the cell and only transiently up-

regulated in response to neuronal activation (Spencer et al., 2006, Palm et al., 

1998). Gene expression profiling can only offer a snapshot of the transcriptional 

response to cellular challenge therefore it is plausible that any potential spikes 

in sNRSF activity may have been missed under the time course used in this 

experiment and cannot be ruled out as a potential regulatory mechanism 

operating at the BDNF gene locus.  

Although our data clearly supports a dual role for NRSF in modulating the 

transcriptional activity of BDNF in response to cocaine challenge, the exact 

mechanism of action is yet to be elucidated and likely reflects the molecular 

architecture surrounding the promoter in both a genetic- and context-specific 

manner. NRSF has been shown to interact with many factors implicated in 

epigenetic regulation of gene expression through its cofactor CoREST, including 

the histone H3K4 and H3K9 demethylase LSD1, the methyltransferase G9a, the 

SWI/SNF ATP-dependent nucleosome-remodelling factor BRG1/SMARCA4 and 

MeCP2 (Lee et al., 2005, Lunyak et al., 2002, Roopra et al., 2004, Battaglioli et al., 

2002, Ooi et al., 2006). To investigate potential chromatin remodelling events 

associated with NRSF-signalling at the different BDNF promoters upon 

occupancy or dissociation of this transcription factor, we performed ChIP using 

histone markers of active and inactive chromatin states. As expected, the active 

H3K4me2 mark was concomitant with transcriptional activation in response to 

cellular challenge whereas promoters undergoing transcriptional repression 

were marked by H3K9me3. Previous studies addressing epigenetic regulation 
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of the BDNF gene following cocaine challenge reported increased histone 

acetylation of BDNF promoters II and IV which correlated with transcriptional 

activation (Sadri-Vakili et al., 2010, Bredy et al., 2007, Kumar et al., 2005). We 

observed up-regulation of BDNF II at 1 hour cocaine treatment which coincided 

with H3K4me2 signals at the corresponding promoter region but at longer 

exposure times transcriptional repression was observed which associated with 

loss of this active chromatin mark. BDNF IV was up-regulated at 4 hours cocaine 

treatment but reduced at 24 hours. A previous study in neuroblastoma cells 

reported reduced BDNF expression following 24 hours exposure to cocaine 

through inhibition of CREB (Feng et al., 2006). NRSF occupancy of target gene 

promoters can mediate transcriptional repression through antagonising 

transcriptional activators such as CREB; a known regulator of BDNF promoter I 

and IV expression (Tabuchi et al., 2002a, Sadri-Vakili et al., 2010, Pruunsild et 

al., 2011). This is exemplified through its action at the NRSE-containing CART 

(Cocaine- and amphetamine-regulated transcript) promoter, resulting in 

transcriptional repression through blockade of CREB signalling (Zhang et al., 

2012a). A similar mechanism may be operating in our cell-line model at BDNF 

promoter I, whereby saturation of NRSF correlated with silencing of this 

transcript under all conditions tested. Enrichment of the two contradictory 

histone markers, H3K4me2/H3K9me3, across different conditions at all 

promoters tested were also observed which correlated with either basal levels 

of transcription or activation in response to cocaine. This bivalent H3 

modification has previously been associated with the TSS of several genes 

within human ovarian cancer cells and was reported to be a marker of 

epigenetic plasticity, reflecting transcriptional flexibility for context-specific 
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phenotypic variation within tumour microenvironments (Bapat et al., 2014). 

Other bivalent histone modifications such as the well characterised 

H3K4me2/H3K27me3 mark have been associated with ‘transcriptional 

readiness’ of developmental genes in embryonic and tissue-specific stem cells, 

allowing for activation or repression of genes involved in lineage-specific 

differentiation (Bernstein et al., 2006). Association of this bivalent modification 

at the BDNF gene locus in response to cocaine challenge may be reflective of 

cocaine-induced plasticity over the region which has been linked to the 

medium- to long-term alterations in behaviour following drug exposure (Kumar 

et al., 2005).  

 

3.10 Summary 

In summary, the different BDNF promoters could be characterised by their 

distinct epigenetic signatures which were shown to be dynamically modulated 

in response to cocaine. These signatures extended to neighbouring promoters 

suggesting that clustering of closely related transcripts was in operation in 

response to cellular challenge. This is in line with previous studies in SH-SY5Y 

which showed that distal promoters forming clusters 1 (promoters I-III) and 2 

(IV-VII) are differentially regulated in response to cytotoxic stress (Baj and 

Tongiorgi, 2009). The distinct mechanisms of NRSF action at different BNDF 

promoters could be one mechanism regulating plasticity over the gene locus in 

response to cocaine challenge, suggesting that the BDNF transcripts function in 

different cellular roles in response to this drug. Although we did not address the 

functional significance of differential BDNF transcript levels within the cell, co-

ordinate and differential regulation of multiple BDNF promoters in part by 



 

172 
 

NRSF-signalling may be important in the sub-cellular localisation of distinct 

mRNAs encoded from the locus which are believed to play distinct roles in 

neural plasticity and compensatory neuroadaptations to cellular challenge.  
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Chapter 4 

 

Characterisation of a NRSF Regulated Internal Promoter in the 

Schizophrenia Genome-Wide Associated Gene MIR137 
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4.1 Introduction 

The role of genetic variants in the pathophysiology of schizophrenia has 

been well documented (The International Schizophrenia Consortium, 2008, 

Walsh et al., 2008, Xu et al., 2008, Stefansson et al., 2008, The International 

Schizophrenia Consortium, 2009, Sebat et al., 2009, Kirov et al., 2009, Shi et al., 

2009, Rujescu et al., 2009, Stefansson et al., 2009, The Schizophrenia Psychiatric 

GWAS Consortium, 2011, Van Den Bossche et al., 2012, Xu et al., 2013). Genetic 

variants within miRNA genes or their binding sites within target mRNAs may 

potentiate aberrations in the fine-tuning of complex regulatory networks 

causing cellular dysfunction which may manifest as a neuropsychiatric 

phenotype (Rossi et al., 2014). Genome-wide association studies have identified 

the MIR137 gene locus to be strongly associated with schizophrenia (The 

Schizophrenia Psychiatric GWAS Consortium, 2011, Ripke et al., 2013). MIR137 

encodes for miR-137 which functions in neurodevelopment, adult neurogenesis 

(Smrt et al., 2010, Szulwach et al., 2010) and is a validated regulator of GWAS 

candidate genes for schizophrenia, including CACNA1C, CSMD1, C10orf26, TCF4 

and ZNF804A (The Schizophrenia Psychiatric GWAS Consortium, 2011, Kim et 

al., 2012, Kwon et al., 2013), suggesting that impairments in the regulation 

and/or function of miR-137 may be a key mechanism in neuropsychiatric 

disease.  

Bioinformatic analysis of the MIR137 locus predicted an internal 

promoter adjacent to the miR-137 sequence (Figure 4.1). This promoter 

encompassed a VNTR, which has previously been shown to modulate the 

processing and function of miR-137 in melanoma cell lines (Bemis et al., 2008). 

Down-regulation of miR-137 has been implicated in a number of cancers as 
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discussed in Chapter 6 which explores a potential role for miR-137 

dysregulation in breast cancer. Polymorphic domains, found in both coding and 

non-coding regions of the genome, have been implicated in the pathogenesis of 

several neurological disorders. It was postulated that there may be 

transcriptional properties associated with the MIR137 VNTR as repetitive DNA 

can act as transcriptional regulators in both a tissue-specific and stimulus-

inducible manner (Fiskerstrand et al., 1999, MacKenzie and Quinn, 1999, 

Lovejoy et al., 2003, Klenova et al., 2004, Guindalini et al., 2006, Haddley et al., 

2008, Ali et al., 2010, Vasiliou et al., 2012, Paredes et al., 2013). As such, these 

regulatory domains have been identified as clinical correlates of psychiatric 

conditions, including schizophrenia (Liu et al., 1999, Prata et al., 2009). The 

functional significance of these polymorphisms is likely to be reflected through 

gene-environment interplay (GxE), with VNTR genotype acting mechanistically 

to influence disease phenotype. This could result in modification of gene-

expression in a tissue-specific pattern or in response to a particular 

environmental challenge, which may be differential dependent on VNTR copy 

number and/or the presence of single nucleotide polymorphisms (SNPs) within 

the VNTR sequence (Strazisar et al., 2014); modulation of post-transcriptional 

processing; or both.  

Haplotype analysis of the MIR137 gene locus using genotype data from 

the HapMap CEU cohort showed that the MIR137 GWAS SNPs for schizophrenia 

were not in linkage disequilibrium (LD) with the MIR137 VNTR but that the 

rs1625579 GWAS SNP did tag another SNP (rs2660304) within the proposed 

internal MIR137 promoter. This SNP has previously been associated with 

smoking-related cancers (Roy et al., 2014a, Roy et al., 2014b). The global 
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prevalence of smoking in patients with schizophrenia is two- to four-fold that of 

the general population (Kumari and Postma, 2005) suggesting there may be a 

genetic link between increased smoking rates and schizophrenia. A GxE 

interaction using smoking as an environmental pathogen was therefore 

addressed in a large schizophrenia and matched control cohort.  

ENCODE ChIP-Seq data (Release 2, May 2012) indicated that NRSF was 

binding at the internal promoter. NRSF has been implicated in several 

neurological diseases, including schizophrenia through modulation of 

associated signal transduction pathways (Loe-Mie et al., 2010). NRSF has 

several isoforms, most notably the truncated isoform sNRSF which has been 

shown to have distinct functions from the full-length protein and whose 

expression is often associated with cellular stress or disease progression 

(Howard et al., 2008, Quinn et al., 2002, Coulson et al., 2000, Palm et al., 1998, 

Abramovitz et al., 2008, Spencer et al., 2006). The transcriptional mechanisms 

that may operate at the proposed internal promoter VNTR to regulate cellular 

levels of miR-137 are addressed in this chapter which could underpin a 

pathway modulating schizophrenia. It was hypothesised that NRSF and the 

MIR137 VNTR may act individually or in combination to modulate the 

expression and function of miR-137 in a cellular model of CNS dysfunction. This 

hypothesis was tested by 1) addressing allele-specific and stimulus-inducible 

regulation of the internal MIR137 promoter region, focussing specifically on the 

transcription factor NRSF and DNA methylation, under control conditions and 

following cellular challenge and  2) genotyping the MIR137 VNTR for 

association with schizophrenia in a case-control study cohort.  
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4.2 Aims 

 Validate a potential internal promoter VNTR within the MIR137 gene 

characterised from in silico analysis of the locus 

 Investigate NRSF regulation over the MIR137 locus predicted from 

ENCODE data using chromatin immunoprecipitation  

 Explore the differential  roles of NRSF and its truncated isoform sNRSF in 

regulating MIR137 expression using over-expression assays  

 Explore differential regulation of transcripts originating from the locus 

in response to drug challenge and correlate with promoter methylation 

status 

 Genotype and linkage disequilibrium analysis of the MIR137 VNTR to 

determine whether it can be used as a biomarker for predisposition to 

schizophrenia 

 Analysis of GxE interaction using smoking status as an environmental 

pathogen  
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4.3 Results 

4.3.1 Bioinformatic analysis of the MIR137 genomic locus  

Bioinformatic analysis of the MIR137 gene locus was performed using 

the UCSC genome browser, hg19 release (Kent et al., 2002, Rosenbloom et al., 

2013), as described in section 2.2.6.8. MIR137 is located on chromosome 1p22 

within the non-protein coding RNA genes MIR137HG (MIR137 host 

gene)/AK094607 (Bemis et al., 2008) and AK311400 (Suzuki et al., 2011). 

Within the pri-miRNA-137 sequence there is a 15 bp VNTR, 6 bp upstream of 

the precursor from which the functional miR-137 is processed (Bemis et al., 

2008) (Figure 4.1A). Interrogation of ChIP-seq data from ENCODE (The 

ENCODE Project Consortium, 2011, Rosenbloom et al., 2013) identified both 

RNA pol II binding, necessary for mRNA transcription, and NRSF binding over 

the region encompassing the MIR137 VNTR (position, chr1:98511662-

98511917). ENCODE data also identified NRSF occupancy within the first intron 

of MIR137HG (position, chr1:98513800-98514144). The rVista portal, a web-

based tool for analysing the regulatory potential of evolutionarily conserved 

regions of non-coding DNA through comparative genomics and transcription 

factor binding site predictions (Loots and Ovcharenko, 2004), also supported 

NRSF binding at the VNTR adjacent to miR-137 (position, chr1:98511764-

98511782, Motif ID: V$NRSF_Q4) from the Transfac database (Matys, 2003) and 

sequence analysis validated the presence of a NRSF binding site (Figure 4.1B). 

Similar to the predicted NRSE located within this identified promoter, our lab 

has previously shown that NRSF can modulate the expression of neuropeptide 

genes (AVP, TAC1 and TAC3) and BDNF (as discussed in Chapter 3) through 

binding  to  NRSE-like  motifs  located  within  close  proximity   to   their   major   
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Figure 4.1. Characterisation of an internal promoter for MIR137. A, Schematic showing the 

non-protein coding genes MIR137HG (AK094607), AK311400, and AK309618 as described in 

the UCSC Genome Browser, Assembly GRCh37/hg19, accessed May 2012. Exons represented as 

black boxes; introns as connecting lines. The numbers above indicate size in bp, unless stated 

otherwise. The direction of transcription is indicated by a dashed arrow. MicroRNA (miR)-137 

and miR-2682 are denoted by dark grey boxes. A 15-bp variable number tandem repeat (VNTR) 

immediately upstream of miR-137 is represented as a light grey bar and CpG islands as green 

boxes. NRSF binding sites identified from ENCODE ChIP-seq data are marked as vertical arrows 

i and ii. Lower panel, Transcription factor binding and histone marks over the internal MIR137 

promoter from ENCODE V2 data. B, Sequence targeted by PCR primers for the internal MIR137 

promoter (Imir137). Upper case font indicates exons and lower case font introns. PCR primer 

sequences are marked by horizontal arrows; the dashed horizontal arrow marks the alternative 

forward primer targeting the VNTR alone. The first line of sequence not targeted by the PCR 

primers represents the additional sequence included in the Imir137(4)+A/C constructs 

containing the rs2660304 SNP. Thick arrows represent the transcription start sites of the 

AK311400 and AK309618 transcripts, respectively. The VNTR sequence is highlighted grey; the 

repetitive element is marked with brackets, n representing copy-number variation. Sequence 

variation in the first repeat of the VNTR is highlighted in bold font; known SNPs (dbSNP 142) 

are highlighted in red font and labelled with their SNP ID. Underlined text indicates miR-137 

sequence. Sequence marked with asterisks’ represents predicted NRSF binding sites identified 

using rVista 2.0 (http://rvista.dcode.org/). [Figure presented on opposite page]. 
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transcriptional start sites (Coulson et al., 1999, Quinn et al., 2002, Spencer et al., 

2006, Gillies et al., 2009). The genomic architecture surrounding the MIR137 

gene, such as active histone marks and CpG islands identified from UCSC data, 

suggests there is a promoter in this region which was hypothesised to be 

important for the regulation of miR-137 expression and the expression of 

neighbouring transcripts. This is summarised in Figure 4.1. This putative 

internal promoter was termed Imir137.  

 

4.3.2 The Imir137 promoter supports reporter gene expression in the 

SH-SY5Y neuroblastoma cell line   

To assess the regulatory function of the putative Imir137 promoter 

VNTR, both a 4-copy and 12-copy repeat of this polymorphic domain was 

cloned into the pGL3-Basic (pGL3B) luciferase reporter gene vector which lacks 

promoter and enhancer sequences (see section 2.2.2.11). The constructs 

included    -361/ -481 to +38 bp of the Imir137 promoter using the first base of 

the pre-miRNA sequence as +1, which incorporated the entire VNTR sequence 

(Figure 4.1B). To determine the direction of promoter activity, this sequence 

was cloned in both the forward and reverse orientation (Figure 4.2A). One 

previous report demonstrated that the low (3-copy) and high (12-copy) VNTRs 

differentially affected miR-137 processing in vitro (Bemis et al., 2008). The 

ability of these two variants to modulate transcription was therefore tested. The 

4-copy variant was selected over the 3-copy variant in this study as it was the 

most common allele observed in individuals of European ancestry, determined 

from genotype analysis of the HapMap CEU cohort and a schizophrenia and 

matched control cohort. Allele and genotype frequencies for the MIR137 VNTR 
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in the schizophrenia cohort are detailed in Table 4.1 and 4.2 of section 4.3.6. 

The difference in the 5’ end of these fragments reflected the two distinct VNTRs 

and were termed Imir137(4) and Imir137(12), respectively. In this in vitro 

system, the ability of Imir137 to act as a promoter was clearly demonstrated, 

showing a 65.0- or 75.0-fold increase in activation when containing either the 4- 

or 12-copy repeats, respectively, in the forward orientation (Figure 4.2B; 

***p<0.001 for the average fold difference of luciferase activity supported by 

both alleles of the MIR137 promoter VNTR over the pGL3B control). Consistent 

with promoter function in this domain, the reverse orientation had no activity. 

A small but significant difference was observed when the two alleles were 

compared with one another suggesting that copy number supports differential 

regulation (Figure 4.2B; ##p<0.01 for allelic differences in luciferase activity 

supported by Imir137).  

To determine if any effect was contributed by the VNTR alone, the two 

variants of this domain including -86 or -206 to +38 bp of the proximal flank 

sequence (reflecting the 4- and 12-copy repeats) were cloned into the pGL3-

Promoter (pGL3P) vector, upstream of the minimal SV40 promoter in forward 

and reverse orientations (Figure 4.2A). These were termed VNTRmir137(4)F 

or R and VNTRmir137(12)F or R, respectively, to indicate both copy-number 

and orientation of the fragment. There was very little change in activity directed 

by the VNTR alone compared with the pGL3P control. Nevertheless, when 

subjected to Dunnett's one-tailed t-test the 4-copy variant supported a small 

increase in reporter activity compared with pGL3P (0.2-fold increase) whereas 

the 12-copy variant repressed activity (~0.2-fold decrease). This resulted in a 

significant difference in activity when the two VNTRs in the forward orientation  
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Figure 4.2. Validation of an internal promoter in the MIR137 gene. A, Schematic 
representation of MIR137 constructs aligned to the MIR137 gene showing the 4-copy, 
Imir137(4), and 12-copy, Imir137(12), variants of the MIR137 VNTR ± the proximal flank 
region in the pGL3B (Basic) and pGL3P (Promoter) reporter vectors, respectively, in forwards 
(F) and reverse (R) orientation. B-C, Average fold change in luciferase activity supported by the 
MIR137 constructs over vector controls in SH-SY5Y cells. N=4. *Significant changes in luciferase 
activity over backbone control. #Significant changes in luciferase activity between experimental 
conditions. */#P<0.05, **/##P<0.01, ***/###P<0.001. 
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were compared to one another (Figure 4.2C; ###p<0.001, allelic differences in 

luciferase activity supported by the SV40 promoter), however the VNTR does 

not possess major regulatory properties, such as enhancer or repressor 

functions, under the conditions and cells tested. 

 

4.3.3 NRSF can bind to the Imir137 promoter region and modulate its 

activity in a stimulus-inducible and allele-dependent manner  

Using consensus DNA binding sequence analysis, several potential NRSF 

binding sites were identified within the MIR137 gene locus. Two of these are 

predicted from ENCODE data over the locus; one within intron 1 of the 

MIR137HG gene, which was termed binding site I (BSi), and the other within the 

Imir137 promoter, termed BSii (Figure 4.3A-B). To validate NRSF occupancy of 

these regions, ChIP assays were performed (see section 2.2.8.1) in human SH-

SY5Y cells which are homozygous for the 4-copy repeat variant of the MIR137 

promoter VNTR. The anti-NRSF (H-290 X) antibody (Table 2.3) used in this 

experiment recognises the amino terminal of NRSF and therefore identifies all 

known isoforms of this protein. SH-SY5Y cells express both full-length NRSF 

and the sNRSF isoform. Under control conditions (sterile filtered d.H2O), 

enrichment for NRSF binding was observed over the Imir137 promoter (BSii) 

but not at the intronic site of MIR137HG (BSi) (Figure 4.3C). It is known that 

many cocaine-induced plasticity genes, including BDNF as discussed in Chapter 

3, are regulated by NRSF (Bruce et al., 2004). Cocaine is a psychostimulant that 

has been used in vivo to mimic human psychosis in models of schizophrenia 

(Pihlgren and Boutros, 2007). It can also be used as a robust signal for 

modulating NRSF expression in vitro as demonstrated  in  Chapter 3.  To address  
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Figure 4.3. NRSF modulation of the MIR137 internal promoter in SH-SY5Y cells. A, 

Predicted NRSF binding sites (BS) across MIR137 identified from Transcription Factor ChIP-seq 

from ENCODE, UCSC Genome Browser (http://genome.ucsc.edu/). B, Canonical 21 bp NRSF 

binding motif found within NRSF target genes and sequence homology with predicted BS within 

MIR137. C, Chromatin immunoprecipitation (ChIP) assays showing NRSF binding at the 

putative BSii encompassing the internal MIR137 promoter (Imir137) VNTR under control 

conditions (sterile filtered d.H2O) and after 1 hour treatment with cocaine. D, Expression 

profiling of mRNAs expressed from the MIR137 locus after 1 hour treatment with 10 μM 

cocaine. E, Relative levels of luciferase expression supported by the Imir137(4/12)F/R 

constructs in response to 1 hour treatment with 10 μM cocaine. N=4. *Significant changes in 

luciferase activity over backbone control levels. #Significant changes in luciferase activity 

between experimental conditions. */#P<0.05, **/##P<0.01, ***/###P<0.001. 

http://genome.ucsc.edu/�
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a potential role for NRSF-mediated regulation of the MIR137 locus, SH-SY5Y 

cells were treated with cocaine and processed for ChIP and RT-PCR. Following 1 

hour treatment with 1 µM cocaine, NRSF binding was reduced at the Imir137 

promoter (BSii), with loss of binding observed following 10 µM cocaine 

treatment (Figure 4.3C). As a control, it was demonstrated that cocaine 

reduced NRSF binding at the previously characterised BDNF promoter II NRSE 

domain (Figure 4.3C) (Palm et al., 1998, Timmusk et al., 1999). The loss of 

binding to BSii was correlated with loss of AK309618 mRNA expression but not 

MIR137HG and AK311400 expression (Figure 4.3D). Cocaine had no affect on 

the level of reporter gene expression supported by either Imir137(4) or 

Imir137(12) suggesting that other domains outside of the proximal promoter 

may be involved in the response of the endogenous gene (Figure 4.3E). 

 

4.3.4 The MIR137 locus is differentially regulated in response to NRSF 

over-expression and cocaine treatment  

To further investigate the role of NRSF-mediated regulation of the 

MIR137 locus, the effect of over-expression of full-length NRSF (RE-EX1) and 

sNRSF on both endogenous MIR137 mRNA expression and the activity of 

reporter gene constructs containing the internal promoter in SH-SY5Y cells 

were analysed. Over-expression of RE-EX1 but not sNRSF resulted in down-

regulation of both AK311400 and AK309618 mRNAs (Figure 4.4A) whose 

transcripts initiate from the Imir137 promoter region which has been shown to 

be bound by NRSF in ChIP assays (Figure 4.3C). This was not a metabolic or 

non-specific affect on the cell transcriptome as MIR137HG was not significantly 

affected   (Figure 4.4A).  Co-transfection  of   the  Imir137  promoter  constructs  
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Figure 4.4. Differential regulation of the MIR137 locus following NRSF over-expression in 

SH-SY5Y cells. A, Expression of AK311400, AK309618 and MIR137HG/AK094607 mRNA 

following over-expression of full-length human NRSF (RE-EX1) and sNRSF. Expected band sizes 

for AK311400, AK309618 and MIR137HG were 274 bp, 451 bp and 291 bp, respectively. B-C, 

Average fold change in luciferase activity compared to pGL3B (B) and pGL3P (C) controls 

following transfection of MIR137 reporter gene constructs under control conditions (pcDNA3.1 

backbone alone) or in combination with RE-EX1 or sNRSF over-expression constructs. N=4. 

*Significant changes in luciferase activity over backbone control. #Significant changes in 

luciferase activity between experimental conditions.  */#p<0.05, **/##p<0.01, ***/###p<0.001. 

[Figure presented on opposite page]. 
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with either RE-EX1 or sNRSF demonstrated a differential response dependent 

on the genotype of the VNTR. RE-EX1 over-expression demonstrated a 2-fold 

decrease in reporter gene activity on the Imir137(4) (*p<0.05) whereas the 

Imir137(12) was not affected  (Figure 4.4B). SH-SY5Y  cells  are  homozygous  

for  the 4-copy  allele of  the  MIR137 VNTR,  therefore down-regulation of 

reporter gene expression supported by Imir137(4) correlates with down-

regulation of the AK311400 and AK309618 mRNAs expressed from the MIR137 

locus following over-expression of NRSF (Figure 4.4A). Conversely, sNRSF had 

no affect on Imir137(4) but increased activity supported by Imir137(12). The 

difference between activity supported by Imir137(4) and Imir137(12) in 

response to RE-EX1 and the truncated isoform sNRSF was 1.4-fold 

(###p<0.001) and 1.5-fold (#p<0.05), respectively. The lab has previously 

shown that NRSF and its alternative isoforms do not always function as 

transcriptional repressors (Spencer et al., 2006, Gillies et al., 2011, Coulson et 

al., 1999), especially when the NRSE motif is located within the promoter region 

of its target genes as exemplified by the neuropeptide genes AVP (Coulson et al., 

1999, Quinn et al., 2002), TAC1 (Quinn et al., 2002) and TAC3 (Gillies et al., 

2009). When the VNTR domain alone was investigated in conjunction with RE-

EX1 over-expression, it was noted that a small and comparable reduction in 

activity (## p<0.01) was seen for both VNTRmir137(4)F (1.2-fold) and 

VNTRmir137(12)F (1.4-fold) (Figure 4.4C). However the greatest difference 

observed was in response to sNRSF over-expression, which resulted in major 

repression of the 4-copy VNTR (2.2-fold). There is a potential NRSF binding site 

within the MIR137 VNTR sequence domain (Figure 4.1B) which supports the 
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finding of allele-specific differences in reporter gene activity following over-

expression of NRSF and sNRSF. 

 

4.3.5 Cocaine-induced methylation over the Imir137 promoter  

Cocaine exposure has been shown to induce differential gene expression 

through modification of epigenetic signatures, including promoter DNA 

methylation (Anier et al., 2010). The presence of two annotated CpG islands 

within the promoter regions of the MIR137HG (chr1:98519002-98519983) and 

AK311400/AK309618 (chr1:98510967-98511710) transcripts suggests active 

regulation of these non-protein coding RNAs in a tissue-specific and stimulus-

inducible manner through modification of the CpG residues. To address this, the 

methylation status of the MIR137HG and Imir137 promoters in SH-SY5Y cells 

was investigated under  normal growth  conditions  and in  response to cocaine 

using methylated DNA immunoprecipitation (MeDIP), a technique that utilises a 

GST (glutathione-S-transferase protein)-MBD (methyl binding domain) fusion 

protein which enriches for methylated double stranded DNA (see section 2.2.9). 

PCR analysis of the immunoprecipitated DNA using primers targeting the CpG 

island (CGI) upstream of MIR137HG (-3753 to -4734 bp) showed that cocaine 

had no effect on DNA methylation in this region (Figure 4.5). This is consistent 

with our expression data in which cocaine had no effect on the levels of 

MIR137HG mRNA (Figure 4.3D). Under both control conditions and following 1 

hour treatment with 10 µM cocaine, signal was observed  in  both  the  

methylated  and  unmethylated  samples  for  the MIR137HG  CGI suggesting 

allele-specific methylation over this region or variation in the methylation 

patterns across the population of cells. In contrast, MeDIP analysis over the CGI 
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encompassing the Imir137 promoter VNTR showed allele-specific enrichment 

in response to cocaine treatment (Figure 4.5) inferring that this promoter may 

be a DNA methylation regulated domain for one of the expressed MIR137 

transcripts in SH-SY5Y cells. Loss of AK309618 mRNA in response to cocaine 

treatment provides support for this (Figure 4.3D). 

 

 

 

 

 

 

 

 

 

Figure 4.5. Methylation status of the MIR137 gene promoters in SH-SY5Y cells. PCR 

analysis of genomic DNA samples following incubation with a GST-MBD fusion protein which 

targets methylated double stranded DNA. Signal for the MIR137HG promoter CpG island (CGI) 

was observed in both the methylated and unmethylated samples under control conditions 

(sterile filtered d.H2O) and following 1 hour treatment with 10 µM cocaine in SH-SY5Y cells. 

Methylation over the MIR137 internal promoter VNTR was observed following cocaine 

exposure. MBD, methyl binding domain; GST, glutathione-S-transferase protein. 
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4.3.6 Genotype Variation of the MIR137 VNTR in Schizophrenia 

Functional analysis of the MIR137 locus supported differential gene 

regulation dependent upon both copy number of the VNTR and the cellular 

environment (cocaine or NRSF levels). We therefore hypothesised that the 

VNTR copy number may be an important predisposing factor in the 

development of neurological dysfunction including schizophrenia. This might 

be especially true in conjunction with an environmental insult to modulate the 

function of the VNTR. To test this hypothesis, the genotype of this repetitive 

element was addressed in 823 schizophrenic patients and 762 healthy controls, 

as described in section 2.2.7.2. Twelve alleles of the 15 bp promoter VNTR were 

identified; the smallest had 3-copies of the repeat, the largest 14-copies, with a 

plurality of individuals homozygous for the 4-copy variant, Figure 4.6. Allele 

and genotype frequencies are outlined in Table 4.1 and Table 4.2, respectively. 

Clump analysis (Sham and Curtis, 1995) was performed to determine 

significant differences between cases and controls with respect to allele 

frequencies and genotype of the MIR137 VNTR. Using this statistical model, no 

significant difference was observed under the conventional chi-squared (X2) 

approach (Table 4.3). This is consistent with two recent studies, one in 

individuals of European ancestry (Molecular Genetics of Schizophrenia cohort) 

and the other in Japanese patients, which found no association for this VNTR 

with schizophrenia (Egawa et al., 2013, Duan et al., 2014). Examination of 

cognitive endophenotypes did not show any associations that withstood 

correction for multiple testing (see Appendix 5, data generated by Dr. Bettina 

Konte, University of Halle-Wittenberg, Halle, Germany). The lack of statistical 

correlation may reflect the rare higher copy-number variants being significantly 
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underrepresented in the population  thus   giving   us   little   power   to   address   

the   role  of   the  functionally distinct 12-copy variant found both in this study 

and previously as a modulator of miR-137 processing in a cell line model 

(Bemis et al., 2008), as a simple genetic correlate for risk to schizophrenia.  

 

 

 

 

 

Figure 4.6. Genotyping the MIR137 VNTR in a schizophrenia cohort. Genomic DNA samples 

extracted from human blood of patients with schizophrenia or healthy matched controls were 

amplified by standard PCR using modified primers (5' 6-FAM, fluorescein) targeting the MIR137 

VNTR. Amplicons were separated on a 2% agarose gel supplemented with ethidium bromide 

and sized against a DNA ladder, as represented above. Genotype calls were verified using 

capillary electrophoresis. Numbers represent copy-number of the repeat.        
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Table 4.1. MIR137 VNTR allele frequencies in schizophrenia cohort 

Allele Frequency 
(%) 

4 5 6 7 8 9 10 11 12 13 14 12-14 

Cases 68.65 11.48 5.29 3.10 2.49 2.61 2.31 2.19 1.15 0.36 0.36 1.88 

Controls 70.14 10.37 5.58 3.02 2.69 2.43 2.56 1.90 0.92 0.26 0.13 1.31 

Note: Numbers in the top row represent VNTR copy number. Rare 3-copy alleles were combined 

with the 4-copy allele count. 
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Table 4.2. Genotype data for MIR137 VNTR in schizophrenic individuals against matched 
controls 

Genotype Schizophrenia Controls 

Number of 
Counts 

Frequency 
(%) 

Number of 
Counts 

Frequency 
(%) 

3_3 0 0.00 1 0.13 

3_4 1 0.12 1 0.13 

4_4 381 46.29 377 49.48 

4_5 138 16.77 102 13.39 

4_6 54 6.56 64 8.40 

4_7 38 4.62 31 4.07 

4_8 24 2.92 28 3.67 

4_9 33 4.01 30 3.94 

4_10 33 4.01 25 3.28 

4_11 26 3.16 21 2.76 

5_5 9 1.09 9 1.18 

5_6 14 1.70 7 0.92 

5_7 2 0.24 10 1.31 

5_8 4 0.49 5 0.66 

5_9 1 0.12 3 0.39 

5_10 3 0.36 7 0.92 

5_11 4 0.49 3 0.39 

6_6 2 0.24 2 0.26 

6_7 4 0.49 1 0.13 

6_8 4 0.49 2 0.26 

6_9 5 0.61 1 0.13 

6_10 0 0.00 3 0.39 

6_11 1 0.12 3 0.39 

7_8 2 0.24 1 0.13 

7_10 1 0.12 1 0.13 

7_11 2 0.24 0 0.00 

8_8 1 0.12 2 0.26 

8_9 3 0.36 0 0.00 

8_11 2 0.24 1 0.13 

9_9 0 0.00 1 0.13 

9_10 0 0.00 1 0.13 

9_11 1 0.12 0 0.00 

12_14* 30 3.65 19 2.49 

Total 823 
 

762 
  

Note: Numbers represent copy-number of the repeat. *Genotypes containing at least one high-
copy allele (12-14 repeats) were grouped together. 
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Table 4.3. Significance-testing of allele and genotype frequency data between schizophrenia 
cases and healthy controls using Clump analysis 
 

  Allele        Genotype 

 T1 0.855 0.188 

T2 0.943 0.021* 
T3 0.202 0.014* 
T4 0.859 0.332 

Note: Values represent adjusted P-values for permutation testing of the differences between 
cases and controls with respect to allele and genotype frequencies. * P<0.05. 

 

 

4.3.7 Haplotype structure of the MIR137 Gene 

The functional significance of the previously identified GWAS SNPs for 

schizophrenia, rs1625579 within the MIR137 gene and rs1198588 less than 40 

Kb upstream of MIR137, remains elusive and their presence within non-coding 

regions of the genome suggests that modulation of gene expression or post-

transcriptional processing of miR-137 is a more likely explanation of their 

functional significance in schizophrenia. LD analysis was therefore performed 

using the HapMap CEU sample panel, integrating the VNTR genotypes using a 

down coding procedure whereby each allele is coded as a SNP depending on its 

dosage (2, 1, 0 becoming 1 1, 1 2, 2 2). The position of each consecutive SNP was 

+15 bp, which indicates the repeat length of the VNTR, starting from 

chr1:98,284,369 for the 4-copy variant. This marks the position of the INDEL 

(insertion or deletion) rs71738863 within the repeat element sequence which 

was determined to be the VNTR insertion site. Squared correlation coefficient  

(r2) analysis indicated that the VNTR was not in LD with the GWAS SNPs nor 

tagged by any other markers within the same haplotype blocks defined using 

confidence intervals (Gabriel et al., 2002), Figure 4.7. 
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Figure 4.7. Linkage disequilibrium (LD) analysis of MIR137 gene locus. Haplotype block 

structure of the MIR137 gene based on squared correlation coefficient (r2) values calculated 

from 89 individuals from the CEPH collection of the International HapMap Project using the 

Linkage Format feature in Haploview 4.2  (Hardy-Weinberg p-value cut-off, 0.001; minimum 

genotype cut-off, 0.75; maximum number of Mendel errors, 1; minimum minor allele frequency, 

0.01). SNPs spanning chromosome 1: 98,075,522-98,711,836 were downloaded from the 

HapMap Genome Browser, release #28 (http://hapmap.ncbi.nlm.nih.gov/index.html.en). 

Haplotype blocks, represented by a black triangular border, were determined using 95% 

confidence intervals proposed by Gabriel et al. which defined two haplotype blocks separated 

by the MIR137 VNTR which is located within a recombination hot spot represented by white 

squares. Pair-wise tagging SNP analysis (r2>0.8) revealed that the GWAS SNP rs1625579 and 

the MIR137 VNTR were not in LD. However, high LD (r2=0.96) was observed between 

rs1625579 and the internal MIR137 promoter SNP rs2660304, highlight yellow on the LD plot.    

 

 

http://hapmap.ncbi.nlm.nih.gov/index.html.en�
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4.3.8 MIR137 and schizophrenia-smoking associations  

Pair-wise tagging SNP analysis using genotype data from the HapMap CEU 

cohort revealed that the intronic GWAS SNP rs1625579 and a SNP (rs2660304) 

situated 175 bp and 373 bp upstream of the AK311400 transcript and pre-miR-

137, respectively, were in strong LD (r2 = 0.96), Figure 4.7. The functional 

significance of this SNP was addressed using reporter gene constructs containing 

the common 4-copy variant of the Imir137 promoter VNTR. These constructs 

were named Imir137(4)+A for the major allele and Imir137(4)+C for the minor 

allele (MAF; 0.168 in HapMap CEU). Sequencing confirmed that these constructs 

varied only at the position of rs2660304. Figure 4.8A illustrates the position of 

the rs2660304 SNP in relation to the Imir137 promoter and the rs1625579 

GWAS SNP. A significant difference in activity was observed between the two 

alleles in SH-SY5Y cells (Figure 4.8B, ##p<0.01). There was no significant 

difference in luciferase activity between the Imir137(4) and Imir137(4)+C 

constructs, the latter of which includes an additional 69 bp of sequence, 

supporting that the difference in expression directed by the Imir137(4)+A and 

Imir137(4)+C constructs is a function of the SNP, Figure 4.8B. The rs2660304 

SNP has  previously  been  studied  for  its association   with  tobacco-related  

squamous  cell carcinomas (Roy et al., 2014a, Roy et al., 2014b), with several 

studies identifying miR-137 dysregulation important in lung cancer (Dacic et al., 

2010, Zhu et al., 2013a). The prevalence of smoking in patients with 

schizophrenia is two- to four-fold the rate seen in the general population and it 

has been suggested that smoking may be a form of self-medication in 

schizophrenic individuals due to the normalising effects of nicotine on 

neuropsychiatric  phenotypes (Kumari and Postma, 2005). 
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Figure 4.8. Functional analysis of the MIR137 promoter SNP rs2660304. A, Schematic 

showing the location of rs2660304 within the Imir137 promoter and its relation to the GWAS SNP 

rs1625579; SNPs are highlighted yellow. Lower panel represents the region highlighted blue in 

the top panel, showing the region targeted by PCR primers (labelled PCR search) for cloning into 

the pGL3B luciferase vector system. B-C, Luciferase activity supported by the Imir137(4), 

Imir137(4)+A (major allele) and Imir137(4)+C (minor allele) constructs in SH-SY5Y under basal 

conditions (B) or following 1 hour treatment with 1 mM nicotine (C). N=4. #Significant changes in 

luciferase activity between experimental conditions. ##p<0.01, ###p<0.001. Image taken from the 

UCSC Genome Browser (http://genome.ucsc.edu/index.html), accessed September 2013.       

  

http://genome.ucsc.edu/index.html�
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Nicotine has been previously shown to up-regulate the expression of miR-137 in 

vitro (Huang and Li, 2009). The effect of nicotine on the activity of the Imir137 

promoter SNPs was therefore addressed. Figure 4.8C shows that 1 hour 

treatment of SH-SY5Y cells with 1 mM nicotine did not significantly regulate the 

Imir137 promoter SNP constructs. Tissue culture models may not be appropriate 

for addressing transcriptional changes at the Imir137 promoter in response to 

nicotine as the cells are only exposed to the drug over short time points which are 

not representative of chronic exposures associated with long-term smoking.    

To investigate an association between smoking rates, measured by 

cigarettes smoked per day, and rs2660304 genotype (inferred from genotype 

data obtained for the GWAS SNP rs1625579 which is in strong LD with this SNP, 

r2 = 0.96), linear regression analysis was performed in a sub-group of the 

schizophrenia and matched control cohort accounting for age and sex as 

covariates. Differences in allele and genotype frequencies between the 

schizophrenia and control groups and smokers and non-smokers were also 

evaluated using X2 tests. No significant differences were found between 

rs1625579/rs2660304 genotype and allele distributions between cases and 

controls (genotype frequency, X2=3.55, df=2, p=0.17; allele frequency, X2=0. 33, 

df=1, p=0.56) or smokers and non-smokers in the schizophrenia group (genotype 

frequency, X2=2.19, df=2, p=0.33; allele frequency, X2=0.01, df=1, p=0.93) and 

matched control group (genotype frequency, X2=0.42, df=2, p=0.81; allele 

frequency, X2=0.40, df=1, p=0.53), Table 4.4. After adjusting for age and sex using 

a regression model, there were still no significant associations between 

rs1625579/rs2660304 genotype and smoking rates in both the case and control 

groups (Table 4.5). The MIR137 VNTR alone or in combination with the 
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rs1625579/rs2660304 SNP did not confer a genetic influence on smoking rates 

(data not shown). In line with previous studies (Llerena et al., 2003, de Leon and 

Diaz, 2005), we found significant differences (P<0.05) between schizophrenic and 

non-schizophrenic individuals in terms of smoking status (smoker, non-smoker) 

and rates (Table 4.4 and 4.5, respectively). Sex and age were found to be 

associated in the schizophrenic and control groups, respectively, with higher 

smoking rates found in schizophrenic males and correlating with increasing age 

in the control group, as indicated by negative beta coefficient values (Table 4.5). 

These results do not support a role for the rs1625579/rs2660304 SNP or 

MIR137 VNTR in predicting smoking status and/or rates in schizophrenic or 

healthy individuals. However our data is consistent with previous findings of a 

high prevalence of smoking in schizophrenic individuals, particularly males.   
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 Table 4.4. Demographic profiling of schizophrenia cases and healthy controls in relation to MIR137 rs1625579/rs2660304  

  

Cases : controls Cases Controls 

Cases Controls Smokers Non-smokers Smokers Non-smokers 

Total 696 0.52 655 0.48 512 0.74 184 0.26 297 0.45 358 0.55 

Male 440 0.63 295 0.45 343 0.67 97 0.53 143 0.48 152 0.42 

Female 256 0.37 360 0.55 169 0.33 87 0.47 154 0.52 206 0.58 

Age (mean, range) 38 18-71 46 19-72 37 18-67 40 18-71 47 19-72 45 20-72 

AA 468 0.67 421 0.64 341 0.67 127 0.69 187 0.63 234 0.65 

AC 193 0.28 209 0.32 148 0.29 45 0.24 98 0.33 111 0.31 

CC 35 0.05 25 0.04 23 0.04 12 0.07 12 0.04 13 0.04 

Aa 1129 0.81 1051 0.80 830 0.81 299 0.82 472 0.79 579 0.81 

Cb 263 0.19 259 0.20 194 0.19 69 0.19 122 0.21 137 0.19 

Allele X2 = 0.33 P= 0.56 X2 = 0.01 P= 0.93 X2 = 0.40 P= 0.53 

Genotype X2 = 3.55 P= 0.17 X2 = 2.19 P= 0.33 X2 = 0.42 P= 0.81 

Smoking status X2 = 111.86 P= 0.00 *     
 

Note: a Major allele, b minor allele. Values represent total counts (n) and frequencies within each grouping unless stated 

otherwise. Bold font indicates high smoking rates. P-values represent permutation testing of the differences between 

cases and controls and/or smokers and non-smokers with respect to allele and genotype frequencies and smoking status. 

* P<0.05. 
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Table 4.5. Regression analysis of rs1625579/rs2660304 genotype and smoking rates adjusted 
for age, sex and disease status 

 

 

 

 

 

 

 

 

 

Note: Smoking rates were measured as cigarettes smoked per day. Disease status refers to 

schizophrenic or healthy matched control. Negative β values indicate lower smoking rates for 

each copy of the minor allele of rs1625579/rs2660304 and in females. Positive β values 

indicate positive correlation between smoking rates and age. *P<0.05. Abbreviations: β, beta 

coefficient; CI, confidence interval; cpd, cigarettes smoked per day.  

 

 

 

 

 

 

 

  

Smoking rate (cpd) β Std. Error t     P-value 95% CI 

Lower Upper 

Cases:             
rs2660304 -0.03 0.08 -0.36 0.72 -0.20 0.13 
Age  0.00 0.00 0.70 0.49 -0.01 0.01 
Sex * -0.35 0.10 -3.38 0.00 * -0.56 -0.15 
(Constant) 3.08 0.30 10.36 0.00 2.50 3.67 

Controls:            
rs2660304 -0.08 0.07 -1.21 0.23 -0.22 0.05 
Age * 0.01 0.00 2.57 0.01 * 0.00 0.01 
Sex -0.14 0.08 -1.81 0.07 -0.30 0.01 

Combined: 
      rs2660304 -0.05 0.05 -0.97 0.33 -0.16 0.05 

Disease status * -0.85 0.07 -12.76 0.00 * -0.98 -0.72 
Age 0.00 0.00 1.89 0.06 0.00 0.01 
Sex * -0.26 0.06 -4.03 0.00 * -0.38 -0.13 
(Constant) 3.80 0.20 18.95 0.00 3.41 4.19 
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4.4 Discussion 

MIR137 has been identified as a gene that has a significant association 

with schizophrenia based on GWAS data (The Schizophrenia Psychiatric GWAS 

Consortium, 2011, Ripke et al., 2013). However the location of the associated 

SNPs within non-coding sequence suggests that the functional significance 

could be related to transcriptional or post-transcriptional regulation of the 

MIR137 gene. As such, any challenge to an individual that affects those 

pathways regulating miR-137 concentration, even in the absence of a genetic 

association, could have an impact on parameters associated with schizophrenia. 

The genomic architecture of the MIR137 gene suggested the presence of a 

promoter in the region adjacent to the sequence of miR-137 itself and thus 

internal to the main precursor message. This putative promoter region was 

termed Imir137. The structure of this promoter was also of interest as it 

contained a VNTR domain 6 bp upstream of the precursor sequence of miR-137. 

We confirmed the existence of this promoter by reporter gene analysis and 

validating the presence of two mRNAs, AK311400 and AK309618, which 

originate in this area of the gene locus (Figures 4.2 and 4.3) (Warburton et al., 

2014).  

Encode data predicted the presence of an NRSF binding site at the 

Imir137 promoter which was confirmed by ChIP, Figure 4.3. Not all predicted 

NRSF binding sites in the locus were validated in this experiment as a second 

NRSF binding site in the promoter of MIR137HG was not occupied in this 

analysis, Figure 4.3. To address if NRSF was in part involved in the differential 

regulation of mRNAs at the Imir137 promoter, the levels of NRSF were 
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modulated with an expression construct. This resulted in a decrease in both 

transcripts (AK311440 and AK309618) originating at the Imir137 promoter 

with a minimal affect observed on the expression of full-length MIR137HG. This 

was consistent with the binding observed in ChIP for NRSF at the internal 

promoter. We next addressed the action of cocaine, a known modulator of NRSF 

expression in this cell line (see Chapter 3), a robust activator of other signalling 

pathways relevant to mood disorders in tissue culture models (discussed in 

Chapter 5) and a psychostimulant in vivo (Pihlgren and Boutros, 2007), to 

modulate mRNA expression at this locus. Cocaine resulted in the loss of NRSF 

binding to the Imir137 promoter and correlated with the loss of expression of 

AK309618; one of the two transcripts originating at the internal promoter. 

There was no affect on the expression of AK311400, which would originate 

from a similar position, and the full-length MIR137HG transcript (Figure 4.3). 

Furthermore, analysis of methylation over the MIR137HG and Imir137 

promoters identified a differentially methylated region within the gene locus 

that correlated with differential expression of the AK309618 transcript in 

response to cocaine treatment. NRSF and its co-repressors regulate the fine-

tuning of genes involved in neural plasticity through dynamic regulation of 

epigenetic mechanisms including DNA methylation (Ballas et al., 2005). NRSF 

binding of low-methylated target regions has been shown to be sufficient and 

necessary to maintain a hypomethylated state, with NRSF knock-out resulting 

in hypermethylation (Stadler et al., 2011). This is consistent with correlations 

between reduced NRSF binding of target genes and promoter DNA 

hypermethylation and gene dysregulation in models of neurological dysfunction 

(Jin et al., 2013). This is in line with our data of reduced NRSF binding and 
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increased DNA methylation over the Imir137 promoter region, which contains 

an overlapping CGI (regions associated with low levels of CpG methylation), 

following treatment with cocaine. Regulation over the Imir137 promoter in 

response to cocaine may involve the NRSF co-repressor MeCP2 (methyl CpG 

binding protein 2) which has the ability to selectively recognise methylated 

DNA and has been shown to remain bound to NRSF target genes even following 

NRSF dissociation (Ballas et al., 2005). MeCP2 has previously been shown to 

modulate the activity of both NRSF and miR-137 (Abuhatzira et al., 2007, 

Szulwach et al., 2010), and another NRSF target miRNA, miR-212 (Uchida et al., 

2010), which was shown to be an important mechanisms in the modulation of 

the NRSF target gene BDNF (see Chapter 3) in response to cocaine challenge (Im 

et al., 2010). We cannot determine in this experiment if NRSF levels modulate 

the differential expression of transcripts directed by the Imir137 promoter in 

response to cocaine, but only that cocaine induces a specific set of 

transcriptional responses acting at the internal promoter, of which NRSF is only 

one. Nevertheless, the data points to a central role for NRSF in modulating the 

activity of the Imir137 promoter, potentially through the recruitment of co-

binding partners such as MeCP2 which is further discussed in Chapter 6.  

Modification of epigenetic pathways by NRSF in association with the 

SWI/SNF chromatin remodelling complex has been implicated in intermediate 

phenotypes associated with schizophrenia in part through modulation of the 

GWAS candidate genes TCF4, SMARCA2 and CSF2RA (Loe-Mie et al., 2010). 

Interestingly, TCF4 has been identified as a target of miR-137 (Kwon et al., 

2013), extending this regulatory network to include another major 

schizophrenia candidate gene. Furthermore, it has been shown that perturbed 
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regulation of genes functionally relevant to phenotypic traits associated with 

other neurological disorders may be modulated in part by the NRSF-SWI/SNF 

complex (Lepagnol-Bestel et al., 2009). We propose that a similar model 

involving NRSF could operate at the MIR137 locus, in particular at the Imir137 

promoter, with NRSF regulating medium- to long-term expression through the 

activity of its cofactors which could mediate both histone modifications and 

DNA methylation at this region. Such a mechanism could be modified by any 

genetic variants embedded at the gene locus thus further modulating miR-137 

levels. Such differential regulation of transcripts from the major MIR137 and 

Imir137 promoters would be expected to not only vary the levels of miR-137 

but also the ratio of miR-137 to a second microRNA at this locus, miR-2682 

(Figure 4.1). The function or significance of miR-2682 has not been addressed 

in previous communications. miR-2682 is not present in the AK311440 

transcript but its primary sequence overlaps by 12 bp with the second exon of 

AK309618. Similarly, the different transcripts expressed from this region may 

be post-transcriptionally processed leading to different levels of either 

microRNA which could result in CNS dysfunction. In vivo, the modulation of 

NRSF levels that modulate the transcripts expressed could be directed by 

psychological stressors or other trauma; however the action of the drug used in 

this communication validates the plasticity in expression at this locus. 

Regulation by NRSF is complicated by the distinct functions which have 

been assigned to various isoforms of this gene. The proteins corresponding to 

these isoforms have not been examined as extensively as the full-length protein. 

In this study, over-expression of the truncated isoform sNRSF resulted in data 

that was distinct from the action of full-length NRSF on both the endogenous 
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MIR137 gene and several of the reporter gene constructs. Mechanistically, the 

different NRSF isoforms have been suggested to have distinct regulatory 

functions. Previous data from our group on NRSF-mediated regulation of 

neuropeptide gene expression supports these differential roles of the NRSF 

isoforms. For example, in a rodent model of epilepsy, over-expression of NRSF 

and a construct containing sequence for the human truncated variant in 

dissociated rat hippocampal neurons supported increased endogenous 

expression of the proconvulsant TAC1 gene for the truncated variant but not 

full-length NRSF (Spencer et al., 2006). This correlated with marked up-

regulation of reporter gene activity driven by the TAC1 promoter following co-

transfection with an expression construct for the truncated variant suggesting 

its role as a transcriptional enhancer (Spencer et al., 2006). A similar 

mechanism involving full-length NRSF and sNRSF was also demonstrated in 

human neuroblastoma cells for another proconvulsant gene TAC3 (Gillies et al., 

2009). Furthermore, human sNRSF has been shown to antagonise the action of 

the full-length protein in small cell lung cancer cells causing de-repression of 

the neuropeptide gene AVP (Coulson et al., 2000). The data presented in this 

current study on the action of NRSF or sNRSF on the regulation of the 

endogenous MIR137 gene or the reporter gene constructs is consistent with this 

differential action of these distinct NRSF isoforms. However, SH-SY5Y cells 

endogenously express both isoforms (see Appendix 3) therefore over-

expression assays reflect manipulation of the ratio of NRSF/sNRSF in the cell. 

We predict that in schizophrenia, environmental challenges and stress might 

result in alterations in the ratios of NRSF isoforms that could ultimately result 

in an altered pattern of gene expression. Significantly, the data from reporter 
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gene constructs indicated that the genotype of the VNTR could modulate the 

cellular response to the change in NRSF levels. This would suggest that a GxE 

factor is driving the modulation of expression over the locus. 

The identification of the VNTR was of interest in part because the copy-

number of this type of repetitive domain within the promoter of other genes 

our group has previously analysed, such as MAOA, SLC6A3 or SLC6A4, both 

correlates with susceptibility to CNS disease and supports differential reporter 

gene expression (Hill et al., 2013, Guindalini et al., 2006, Haddley et al., 2008, Ali 

et al., 2010, Vasiliou et al., 2012, Galindo et al., 2011, Roberts et al., 2007). In this 

study, it was demonstrated that the genotype of the Imir137 promoter VNTR 

could mediate differential reporter gene expression both under control 

conditions and in the presence of over-expressed NRSF or sNRSF. To address 

the potential role of this polymorphism as a biomarker for schizophrenia, the 

VNTR was genotyped in the HapMap CEU cohort to determine association with 

previously identified risk variants within the gene locus using LD analysis. This 

analysis indicated that the VNTR was not in LD with the previously identified 

MIR137 GWAS SNPs rs1625579 and rs1198588 (Figure 4.7). We therefore 

tested if the VNTR could independently impart a significant genetic risk for 

schizophrenia using a large schizophrenia and matched control cohort. 

Although there were a large number of variants of the VNTR in the population 

tested, 3- to 14-copies, a plurality of individuals, approaching 50%, were 

homozygous for the 4-copy variant. Furthermore, as the VNTR increased in size, 

the allele frequency in the population decreased, thus giving us little power to 

address the role of the functionally distinct 12-copy variant found in this 

communication, and previously found as a modulator of miR-137 processing in 
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a cell line model (Bemis et al., 2008), as a simple genetic correlate for risk to 

schizophrenia.  

Interestingly, haplotype analysis over the MIR137 locus showed strong 

LD (r2 = 0.96) between the schizophrenia-associated SNP rs1625579 with a SNP 

(rs2660304) within the identified Imir137 promoter (Figure 4.7 and 4.8A). 

Absence of LD between these markers and the MIR137 VNTR which is flanked 

by the two SNPs is compatible with this repetitive element mutating through 

recombination as indicated by white regions of low D’ on the LD plot shown in 

Figure 4.7. Due to the location of the rs1625579 GWAS SNP within the first 

intron of the MIR137HG gene, approximately 8.7 Kb upstream of pre-miR-137, 

we reasoned that the tagged rs2660304 Imir137 promoter SNP located only 

373 bp upstream of pre-miR-137 may be a more appropriate marker for 

schizophrenia through differential modulation of miR-137 expression levels 

driven by the internal MIR137 promoter. Analysis of the transcriptional 

potential of this promoter variant using reporter gene constructs containing the 

common 4-copy variant of the MIR137 VNTR and different alleles of the 

rs2660304 SNP showed allele-specific regulation in SH-SY5Y cells. The 

Imir137(4)+A promoter construct containing the major allele of rs2663004 

supported reduced activity relative to the Imir137(4)+C minor allele construct. 

This difference in reporter gene activity was specific to the rs2660304 SNP as 

expression levels supported by the Imir137(4)+C construct containing the 

minor allele did not significantly differ from the Imir137(4) construct which 

contains 69 bp less sequence than the Imir137(4)+A/C promoter constructs 

(Figure 4.1B). Interestingly, the major allele of the rs1625579 GWAS SNP is 

defined as the risk variant for schizophrenia (The Schizophrenia Psychiatric 
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GWAS Consortium, 2011), which has previously been associated with reduced 

miR-137 expression levels in post-mortem brains of homozygous individuals 

relative to carriers of the minor non-risk allele (Guella et al., 2013). The 

significant reduction in reporter gene activity supported by the Imir137(4)+A 

promoter construct containing the major allele of rs2660304 (A) which is in LD 

with the rs1625579 GWAS SNP for schizophrenia is consistent with this finding 

and implicates this promoter SNP and the internal MIR137 promoter VNTR as a 

potential mechanism driving differential miR-137 expression. A role for 

rs2660304 in the pathophsyiology of schizophrenia is further supported by a 

recent study that reported a nominal genetic association of this SNP with this 

neuropsychiatric condition (Duan et al., 2014), which is in line with it being a 

proxy-SNP for the rs1625579 schizophrenia variant, Figure 4.7. 

The rs2660304 SNP shown in this communication to differentially 

modulate the activity of the Imir137 promoter has previously been associated 

with smoking-related cancers (Roy et al., 2014a, Roy et al., 2014b). The global 

prevalence of smoking in patients with schizophrenia is two- to four-fold that of 

the general population, even after correcting for confounding variables such as 

socio-economic status, alcohol intake, antipsychotic drug regimes or 

institutionalism (Kumari and Postma, 2005). It has been proposed that 

schizophrenic individuals smoke as a means of self-medicating due to the 

reported effects of nicotine on reducing psychiatric symptoms (Glynn and 

Sussman, 1990, Smith et al., 2002, Zhang et al., 2012b, Strube et al., 2014), 

reducing the adverse effects of antipsychotic drug treatment (Goff et al., 1992, 

Anfang and Pope, 1997, Yang et al., 2002) and remediating sensory gating and 

cognitive deficits associated with neuropsychiatric pathologies (Kumari et al., 



 

214 
 

2001, Sacco et al., 2004). Genetic variants within the nicotinic receptors through 

which nicotine exerts its effects have been implicated in both smoking and 

schizophrenia (Faraone et al., 2004), and it has also been demonstrated that 

smoking differentially normalises impaired gene expression associated with 

schizophrenia relative to levels in healthy controls (Mexal et al., 2005). In 

addition, the µ-opioid receptor (MOR), which has been associated with the 

antinociceptive and rewarding effects of nicotine, has been shown to be 

transcriptionally and post-transcriptionally regulated by NRSF (Kim et al., 2004, 

Kim et al., 2008). Both nicotine and NRSF have been identified as modulators of 

miR-137 levels in vitro (Huang and Li, 2009, Warburton et al., 2014) and 

dysregulation of this miRNA and NRSF have been implicated in lung cancer 

(Dacic et al., 2010, Zhu et al., 2013a, Coulson et al., 1999, Coulson et al., 2000), 

suggesting that a mechanism involving NRSF-mediated regulation of miR-137 

via the internal Imir137 promoter may be important for predicting 

vulnerability to smoking and/or smoking-associated cancers. We therefore 

investigated the rs2660304 Imir137 promoter SNP as a mechanism involved in 

1) regulating Imir137 promoter function in response to nicotine exposure using 

the Imir137(4) reporter gene construct variants and 2) influencing smoking 

status through genetic association in schizophrenic individuals and healthy 

matched controls using a linear regression model. The latter was performed 

using genotype data obtained for the rs1625579 SNP from our collaborator 

Prof. Dan Rujescu which is in strong LD with the rs2660304 marker (r2 = 0.96). 

No significant affects on reporter gene expression were observed in response to 

nicotine in our tissue culture model which may reflect cell-specific responses to 

this treatment and therefore requires further investigation in a more 
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appropriate cell line such as those derived from lung cancer to address this 

model in smoking-related cancer or regions of the brain associated with 

nicotine induce-signalling, such as the nucleus accumbens and prelimbic area 

implicated in reward pathways; the orbitofrontal cortex associated with 

compulsive drug taking behaviours and the insular cortex associated with 

nicotine craving and relapse (Bruijnzeel et al., 2014).  

Our regression analysis did not find an individual or additive genetic 

interaction for the rs1625579/rs2660304 SNP and MIR137 VNTR in predicting 

risk for schizophrenia or smoking. The rs1625579 GWAS SNP for schizophrenia 

has been reported to correlate with specific endophenotypes of the condition, 

with the major allele associating with cognitive deficits relating to working 

memory and executive function in individuals with negative symptoms; miR-

137 expression levels; structural variations in the brain (reduced white matter 

density, diminished hippocampal volume and enlarged lateral ventricles) and 

earlier age of onset relative to carriers on the non-risk allele (Cummings et al., 

2013, Lett et al., 2013, Green et al., 2012, Guella et al., 2013), which may explain 

the lack of association from our regression analysis. Similar candidate gene 

association studies on the influence of genetic variants (e.g. BDNF Val/Met66 

polymorphism) in predicting smoking rates in schizophrenia have given 

conflicting results (Montag et al., 2008, Lang et al., 2007, Novak et al., 2010, 

Zhang et al., 2014), with analysis of haplotype blocks normalising these 

inconsistencies (Novak et al., 2010). In this study, we did not address the effects 

of SNPs (see Figure 4.1B) or INDELS within the MIR137 VNTR previously 

associated with modulating miR-137 expression levels in vitro (Strazisar et al., 

2014). Such variants within promoter VNTRs may act as clinical correlates of 
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disease through GxE mechanisms as demonstrated by the rs25531 SNP within 

the long allele of the 5-HTT-linked polymorphic region (5-HTTLPR), whereby 

the presence of the minor allele of this variant confers clinical phenotypes 

normally associated with the short ‘risk’ allele of 5-HTTLPR through modifying 

an AP2 transcription factor binding site (Hu et al., 2006, Wray et al., 2009). 

Through ongoing collaboration with Prof. Dan Rujescu’s group, University of 

Halle-Wittenberg, we are addressing haplotype patterns across the MIR137 and 

NRSF gene loci, including common SNPs and rare variants such as the higher 

alleles of the MIR137 promoter VNTR and previously described INDELs 

(Strazisar et al., 2014), in addition to environmental factors such as smoking 

rates, to identify potential clinical correlates for schizophrenia predisposition or 

markers that may distinguish distinct endophenotypes of schizophrenia.     

 
 

4.5 Summary 

In summary, the internal Imir137 promoter described in this 

communication can be regulated in an allele-specific and stimulus-inducible 

manner in part by the transcription factor NRSF. NRSF could in part modulate 

epigenetic parameters in response to environmental factors, such as stress, in 

the medium to long term in addition to the immediate changes observed in our 

cell line model. This is consistent with a GxE mechanism regulating miR-137, 

and potentially miR-2682, levels in the cell, with alterations in the 

concentration of these miRNAs resulting in differential repression of their gene 

targets in response to environmental cues. This differential expression directed 

by NRSF could be further affected by VNTR genotype. The resulting levels of 
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these miRNAs could play a significant role in CNS dysfunction, including 

schizophrenia. The MIR137 VNTR was not in LD with the previously reported 

GWAS SNPs within the locus suggesting allele-specific regulation operating at 

this repetitive domain is distinct from the mechanisms associated with these 

polymorphisms. However, high LD between the GWAS SNP rs1625579 and a 

SNP within the Imir137 promoter suggests that these SNPs may flank an 

associated haplotype that confers risk for schizophrenia, which may include 

rare high copy number variants of the VNTR such as the 12-copy variant 

demonstrated in our reporter gene assays to be functionally distinct from the 

common 4-copy variant. The importance of these variants in disease 

predisposition may only be apparent at the level of GxE; the cellular response to 

which can be dynamically shaped by cell-specific or stimulus induced activation 

of transcriptional and epigenetic regulators such as NRSF shown in this 

communication to be one such factor operating at this complex disease locus.    
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Chapter 5 

 

NRSF Pathway as an Integrator of Distinct Pathways in  

Mood Disorders 
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5.1 Introduction 

Mental health is in part dependent upon transcriptional responses to 

cues which can be environmental, chemical, physiological and psychological; 

this is termed the GxE component. These changes not only affect our health in 

the short term, but can have medium- to long-term impact via epigenetic 

modulation of gene expression, altering our response to environmental 

challenges. Genome wide association studies (GWAS) of neuropsychiatric 

disorders have identified many common polymorphisms associated with this 

disease group (Cross-Disorder Group of the Psychiatric Genomics, 2013a), 

however the biological significance of such variation is not well understood. The 

vast majority of GWAS-supported variants are located within non-coding 

regions of the genome (Hindorff et al., 2009), suggesting a regulatory function 

rather than a protein variant. This is exemplified in Chapter 4 through the use of 

reporter gene constructs containing genetic variants within the promoter 

region of the schizophrenia associated candidate gene MIR137 to address allele-

specific expression from the locus. The efforts of genetic consortia have 

uncovered substantial shared genetic components between several 

neuropsychiatric conditions, for example schizophrenia and bipolar disorder 

(Cross-Disorder Group of the Psychiatric Genomics, 2013a, Cross-Disorder 

Group of the Psychiatric Genomics, 2013b, Lichtenstein et al., 2009, The 

International Schizophrenia Consortium, 2009), implying common pathological 

mechanisms across related disorders. Therefore, a systematic approach to 

uncovering the functional consequence of such genetic perturbation and/or the 

global effects of environmental stimuli (in line with a GxE component) would 

greatly benefit the discovery of molecular mechanisms underlying disease 
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aetiology and, consequently, the application and development of therapeutic 

intervention.  

It is difficult to address the signal cascade in response to specific 

challenges in vivo due to the heterogeneity of cells involved in processing the 

environmental signals mediating a cellular response. However, in vitro cell line 

models offer a window of opportunity to address in fine detail the signal 

pathways modulated in response to a specific challenge (Lamb et al., 2006). In 

this chapter, we analysed the cellular response to distinct mood modifying 

drugs in the human neuroblastoma cell line SH-SY5Y targeting a commercially 

available compilation of mood disorder genes to address whether they leave a 

molecular signature of transcriptional change to the challenge. These changes 

reflect one window for the spectrum of changes that could occur in vivo, but 

nonetheless outline the potential for a concerted cellular response to drug 

exposure. The drugs chosen for comparison included two psychostimulant 

challenges, amphetamine and cocaine, and two mood stabilisers, sodium 

valproate and lithium. All of these drugs have been shown previously to 

modulate signal pathways in SH-SY5Y cells at the transcriptional and/or post-

transcriptional level (Di Daniel et al., 2005, Pan et al., 2005, Asghari et al., 1998, 

Lew, 1992, Kantor et al., 2002). Enrichment analysis of transcriptional networks 

relating to this gene set was performed using pathway analysis software to 

identify potentially important transcription factors involved in the drug 

response.  
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5.2 Aims 

 Address the in vitro affects of mood modifying drugs on the transcriptome 

using qPCR arrays as a cost effective approach to identifying regulatory 

networks and pathways that might coordinate the cell response to a specific 

drug 

 Perform enrichment analysis of transcriptional networks relating to this 

gene set to identify potentially important factors mediating drug-associated 

regulatory mechanisms 

 Explore associated disease pathways to single out molecular mechanisms 

which may be characteristic of several disease states 

 Bioinformatic analysis of the overlap between several transcriptional 

mechanisms (NRSF binding sites, repetitive DNA and miRNA genes)  to 

identify potential hotspots for GxE mechanisms operating in disease models 

as demonstrated in Chapter 4 
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5.3 Results 

5.3.1 Gene expression profiling of human SH-SY5Y cells in response to 

mood-modifying drugs using Global Pattern Recognition analysis 

To investigate the effects of mood modifying drugs on the expression of a 

panel of genes associated with mood disorders (see Table 2.4 in Materials 

section 2.1.11 for a list of genes included on the array), human derived SH-SY5Y 

neuroblastoma cells were treated for 1 hour under one of the following 

conditions: basal (untreated), vehicle control (sterile filtered dH2O), 10 µM 

cocaine, 10 µM amphetamine, 1 mM lithium or 5 mM sodium valproate based 

on previous in-house optimisation. Differences in gene expression across 

treatment conditions were measured using the commercially available Human 

Mood Disorder 96 StellARrayTM qPCR arrays (Lonza Group Ltd) and analysed 

using the proprietary Global Pattern RecognitionTM (GPR) algorithm (see section 

2.2.5.8) which compares the change in expression of a gene normalised to the 

expression of every other gene in the array (Akilesh et al., 2003). This software 

calculates both the fold-change data and the respective p-values with respect to 

genes that showed minimal changes, generating a list of genes that are ranked 

on the basis of the difference between the test and control expression levels and 

the consistency of the data between the biological replicates. Our group and 

others have recently demonstrated that drugs used in the treatment of mood  

disorders can differentially affect the expression stability of traditionally used 

housekeeping genes, impacting upon their usefulness as normalising factors 

(Sugden et al., 2010, Powell et al., 2013, D'Souza et al., 2013). Unfortunately, 

these large changes in gene expression may mask small but biologically 

important changes in gene expression, such as master regulator genes (e.g., 
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transcription factors). The data in Table 5.1 therefore represents a more 

appropriate display of the genes most changed within the experiment by 

comparing all genes against themselves. As the array contains validated mood 

genes we addressed the top 10 genes which significantly changed in response to 

each drug to define pathways and networks within the larger gene list. 

Following 1 hour treatment of SH-SY5Y cells with the mood stabiliser 

sodium valproate, 8 genes were significantly up- or down-regulated compared 

to the vehicle control; 2 up-regulated (JUN and PAFAH1B3) and 6 down-

regulated (DRD3, GAD1, NRG1, PER3, RELN and RGS4). When compared to the 

results obtained after treatment with another common mood stabiliser, lithium, 

similarities in the gene expression profile with respect to the top 10 altered 

genes was observed; namely down-regulation of GAD1, NRG1, PER3, RELN and 

RGS4, however, only GAD1 reached statistical significance at this time point for 

lithium treatment. In addition, FOS was significantly down-regulated in 

response to lithium. Treatment with the two psychomotor stimulants cocaine 

and amphetamine demonstrated no statistically significant changes in gene 

expression following 1 hour treatment. Furthermore the genes with the lowest 

p-values were distinct between the psychostimulants apart from MOBP (Table 

5.1) demonstrating that these drugs might be preferentially targeting distinct 

pathways for their action. However due to the low p-values obtained under 

these experimental conditions we did not pursue their analysis further. 
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Table 5.1. Gene expression profiling of SH-SY5Y cells following exposure to drugs affecting mood 

LITHIUM SODIUM VALPROATE 

Gene  Description p  Fold change  Gene  Description p Fold change 

FOS  FBJ murine osteosarcoma viral 
oncogene homolog 

0.012 -2.57  DRD3  Dopamine receptor D3 0.001  -7.98  

GAD1  Glutamate decarboxylase 1 0.023 -3.48  RGS4  Regulator of G-protein signaling 4 0.007  -2.08  

RGS4  Regulator of G-protein signaling 4 0.063 -1.51  JUN  Jun oncogene 0.008  2.49  

PER3  Period circadian clock 3 0.067 -1.38  RELN  Reelin 0.012  -1.78  

NRG1  Neuregulin 1 0.068 -1.43  PER3  Period circadian clock 3 0.026  -1.48  

NR1D1  Nuclear receptor subfamily 1, 
group D, member 1 

0.069 -1.48  PAFAH1B3  Platelet-activating factor 
acetylhydrolase, isoform Ib, 
gamma subunit 29kDa 

0.034  1.61  

RELN  Reelin 0.078 -1.94  GAD1  Glutamate decarboxylase 1 0.035  -7.45  

ACE  Angiotensin I converting enzyme 
(peptidyl-dipeptidase A) 1 

0.099 1.31  NRG1  Neuregulin 1 0.044  -1.34  

Hs18s  Human 18S ribosomal RNA 0.105 1.64  MTHFR  Methylenetetrahydrofolate reductase 
(NADPH) 

0.083  1.53  

BDNF   Brain-derived neurotrophic factor  0.106 -1.39  RFX4  Regulatory factor X, 4 (influences 
HLA class II expression) 

0.092  -1.49  
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(Table 5.1 continued) 

COCAINE AMPHETAMINE 

Gene  Description p  Fold change  Gene  Description p Fold change 

SULT1A1  Sulfotransferase family, cytosolic, 
1A, phenol-preferring, member 1 

0.088  1.68  MOBP  Myelin-associated oligodendrocyte 
basic protein 

0.080  2.08  

DRD3  Dopamine receptor D3 0.110  -2.08  XBP1  X-box binding protein 1 0.093  1.34  

FOS  FBJ murine osteosarcoma viral 
oncogene homolog 

0.142  -1.45  NR1D1  Nuclear receptor subfamily 1, group 
D, member 1 

0.109  -1.35  

MOBP  Myelin-associated oligodendrocyte 
basic protein 

0.161  1.85  MAG  Malignancy-associated  gene 0.138  2.81  

SLC6A2  Solute carrier family 6 
(neurotransmitter transporter, 
noradrenalin), member 2 

0.176  -1.28  PAFAH1B3  Platelet-activating factor 
acetylhydrolase, isoform Ib, gamma 
subunit 29kDa 

0.141  1.33  

GRIK3  Glutamate receptor, ionotropic, 
kainate 3 

0.194  -1.67  FKBP5  FK506 binding protein 5 0.159  -1.34  

TIMELESS  Timeless circadian clock 0.200  -1.20  RELN  Reelin 0.198  -1.30  

NCAM1  Neural cell adhesion molecule 1 0.206 -1.20  BCR  Breakpoint cluster region 0.207  1.22  

ND4  Mitochondrially encoded NADH 
dehydrogenase 4 

0.232  1.15  MLC1  Megalencephalic 
leukoencephalopathy with 
subcortical cysts 1 

0.208  2.52  

NR1D1  Nuclear receptor subfamily 1, 
group D, member 1 

0.233  -1.28  GABRA5  Gamma-aminobutyric acid (GABA) A 
receptor, α5 

0.213  -1.78  

 

Note: Top 10 changes in gene expression levels between treated (10 µM amphetamine, 10 µM cocaine, 1 mM lithium and 5 mM sodium valproate) and untreated 
cells measured using qPCR arrays (Human Mood Disorder 96 StellARrayTM) and Global Pattern Recognition (GPR) statistical analysis. Fold change values are 
represented as treated conditions normalised to the drug vehicle. Bold font indicates significant changes in gene expression, p<0.05. 
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5.3.2 Determining regulatory pathways affected by mood modifying 

drugs 

In order to define potential regulatory mechanisms which may be 

operating in response to cellular challenge with the drugs outlined in this study, 

we parsed our gene expression data into MetaCoreTM, an integrated data-mining 

platform for biological pathway analysis. Functional enrichment using the 

Pathway Map analysis tool was performed which generated a list of significant 

pathways relating to our experimental dataset based on p-value and GPR Fold-

change. We first analysed our entire dataset collectively to make comparisons 

across the different treatment conditions. The pathways generated were highly 

enriched for developmental and immune response processes (Figure 5.1). The 

most significant pathway was glucocorticoid signalling (minimum treatment p-

value = 5.15 x 10-7) which came up twice in the top ten significant hits under 

both developmental and immunological regulatory processes. Other regulatory 

mechanisms identified as being highly significant included CD16 signalling in 

natural killer (NK) cells (minimum treatment p-value = 7.28 x 10-6); signalling 

mediated through the complement component 5a (C5a) (minimum treatment p-

value = 2.24 x 10-5); the endoplasmic reticulum stress response pathway 

(minimum treatment p-value = 2.98 x 10-5), circadian rhythm (minimum 

treatment p-value = 1.65 x 10-5) and hormonal growth factor signalling 

pathways involving gastrin (minimum treatment p-value = 3.87 x 10-6), 

thrombopoietin (minimum treatment p-value = 1.33 x 10-5), hepatocyte growth 

factor (HGF) (minimum treatment p-value = 2.10 x 10-5) and extracellular-

signal-regulated kinase 5 (ERK5) (minimum treatment p-value = 1.67 x 10-5) 

which are important regulators of several developmental pathways including 
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those relevant to cellular processes such as cell growth, proliferation, 

differentiation, migration, survival and apoptosis (Jain and Samuelson, 2006, 

Ehrenreich et al., 2005, Comoglio, 2001, Wang and Tournier, 2006, Nishimoto 

and Nishida, 2006). The most notable differences were in the amphetamine and 

cocaine treatment conditions for pathways relating to MIF (macrophage 

migration inhibitory factor)-mediated glucocorticoid regulation and HGF 

signalling, and circadian rhythms, respectively (Figure 5.1). 

To identify pathways that were distinct amongst the different drug 

treatments, we analysed the top ten affected genes from each treatment 

condition separately. Following this criteria little overlap was observed (Figure 

5.2). This likely reflects a bias towards a particular gene(s) as exemplified by 

the BCR gene within the amphetamine treatment condition which accounted for 

7/10 of the pathways, all of which related to G-protein signalling. Sodium 

valproate treatment showed enrichment for pathways relevant to immune 

responses involving C5a, IL-1, MIF, NKG2D (Natural-killer group 2, member D) 

and oncostatin M signalling; all of the pathways included c-Jun and AP-1. 

Lithium and cocaine treatments were enriched for developmental processes 

due to the presence of c-Fos, with ERK5 signalling relevant to cell proliferation 

and neuronal survival and ligand-dependent activation of the ESR1 (Estrogen 

receptor 1)/AP-1 pathways being common to both conditions. Overlap was also 

observed between lithium and amphetamine treatments with respect to 

neurophysiological processing relating to circadian rhythm as a result of NR1D1 

which plays a key role in this process (Preitner et al., 2002, Triqueneaux et al., 

2004).  
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Figure 5.1. Pathway analysis of gene expression changes in response to drugs affecting 

mood. Functional enrichment of gene expression data across all treatment conditions using 

MetaCoreTM pathway analysis software. The top ten statistically significant pathways are 

displayed and are highly enriched for developmental and immune response processes. Genes 

from the original list that are associated with the identified signalling pathways are indicated to 

the right of the chart. Abbreviations: CD16, Fc receptor III; C5a, complement component 5a; 

ERK5, extracellular-signal-regulated kinase 5; IL-1, interleukin-1; NK, natural killer; MIF, 

macrophage migration inhibitory factor.  
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5.3.3 Network Analysis of genes significantly modulated in response to 

mood stabilisers 

To further explore potential gene networks important in the response to 

drug challenge, we analysed only the genes whose expression was most affected 

by lithium and sodium valproate using the Analyse Networks (Transcription 

Factors) algorithm from MetaCoreTM. This generates sub-networks through 

relative enrichment of the uploaded dataset based on the presence of 

transcription factors and/or receptor targets within the original input file. The 

gene set used was composed of GAD1, NRG1, PER3, RELN, RGS4, PAFAH1B3, 

DRD3, FOS and JUN, the first five of which were observed  for both lithium and 

sodium valproate and the remaining were those significantly modified in 

response to either exposure.  

A network containing NRSF, ErbB2 (v-erb-b2 erythroblastic leukemia 

viral oncogene homolog 2) and ErbB3 as seed nodes was the highest ranked 

using this approach, and was defined as genes/proteins uploaded from 

experimental datasets or genes/proteins directly linked to uploaded gene lists 

from which networks are built (Figure 5.3). It included 7 of our 9 input genes 

(DRD3, FOS, GAD1, JUN, NRG1, PAFAH1B3 and RELN) and had a p-value of 5.24 

x 10-29 based on hypergeometric distribution which calculated the probability of 

a particular pathway map arising by chance given the number of genes across 

all gene pathways, within a particular pathway or sub-network and within the 

present experimental dataset. The transcription factors identified as being 

important regulators of this network were c-Fos and c-Jun (collectively AP-1), c-

Myc, ESR1, NRSF, PR (Progesterone receptor), RAR-alpha (retinoic acid 

receptor alpha) and SP3 (Sp3 transcription factor).  
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Figure 5.2. Distinct regulatory pathways associated with different mood modifying drugs. 

The top ten affected genes from our qPCR array dataset (see Table 5.1) were analysed 

separately with respect to the different treatment conditions using the pathway analysis tool 

available in MetaCoreTM. The top ten statistically significant pathways for each drug are 

presented and show enrichment of immune response processes with respect sodium valproate 

treatment, developmental processes with respect to lithium and cocaine treatment and G-

protein signalling with respect to amphetamine treatment. 
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To determine how these regulatory pathways were most relevant for 

mood disorders, we filtered our dataset using the MetaCoreTM ‘Filter by Disease’ 

feature which traces all of the known associated interactions for a particular 

disease process. This assigned 46.15% of our network, not unexpectedly, to 

disease processes relating to mood (Figure 5.4A). Furthermore, it identified 

NRSF and ERK1/2 signalling along the oestrogen receptor pathway as 

important regulators of processes relevant to mood disorders involving this 

subset of genes. In addition to disorders of the CNS, filtering of our dataset by 

disease showed there to be significant associations (96.15%) with breast, skin 

and gastrointestinal neoplasia; GAD1 being the only gene not to be involved in 

these cancer-related pathologies (Figure 5.4B). To further assess which 

signalling pathways may be operating in response to challenge with these mood 

stabilisers, we also filtered our experimental network for Drug Responses 

under the Gene Ontology Processes filter. This identified the fibroblast growth 

factor, ERBB and neurotrophin TRK receptor signalling pathways as important 

cellular responses, with the dopamine D3 receptor, EGFR (Epidermal growth 

factor receptor), ErbB2, ErbB3 and c-Src (V-Src Avian Sarcoma [Schmidt-Ruppin 

A-2] Viral Oncogene) highlighted as therapeutic targets (Figure 5.4C). 
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Figure 5.3. Network Analysis of genes significantly modulated in response to mood 

stabilisers. Genes shown to be significantly up or down regulated in human SH-SY5Y cells in 

response to 1 hour treatment with the mood stabilisers sodium valproate and lithium were 

uploaded into MetaCore™ for network analysis. The gene list was analysed under the Build 

Network feature using the Transcription Factor Targets Modelling algorithm. Seed nodes from 

which the network was built upon are encompassed by a large circle; blue circles represent 

genes from the experimental data, green circles represent molecules from which the pathway is 

expanded from and red circles represent molecules on which the pathway terminates. Genes 

uploaded from the experimental data are also marked with a smaller circle in their top right 

hand corner; red circles represent genes that were significantly up-regulated, whereas blue 

circles represent genes significantly down-regulated. Connecting arrows indicate interactions; 

green arrows represent activation, red arrows represent inhibition and blue arrows are 

unspecified. Overlaid cyan lines represent canonical pathways. Gene names/symbols within the 

network from top to bottom, left to right: Neuregulin 1, Dopamine D3 receptor, RELN, ErbB3, 

ErbB2, EGFR, Shc, GRB2, MEK1/2, c-Raf-1, GAD1 PAFAH gamma, SOS, c-Src, H-Ras, ERK1/2, NRSF, 

SP3, c-Myc, ESR1 (nuclear), c-Fos, c-Jun/c-Fos, JunD/c-Fos, RARalpha, PR (nuclear) c-Jun, and AP-1. 
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Figure 5.4. Network analysis filters for disease and gene ontology processes. The network 

generated in relation to genes significantly regulated in response to SH-SY5Y cell treatment 

with sodium valproate and lithium (Figure 5.3) was filtered to show the relevant disease 

pathways (A and B) and gene ontology processes (C). A-B, Disease processes relevant to mood 

disorders (A), represents 46.15% of the gene network; and breast, skin and gastrointestinal 

neoplasms (B), represents 96.15% of the gene network. C, Gene ontology processes relevant to 

drug response. Seed nodes from which the network was build upon are encompassed by a large 

blue circle. Genes uploaded from the experimental data are also marked with a smaller circle in 

their top right hand corner; red circles represent genes that were significantly up-regulated, 

whereas blue circles represent genes significantly down-regulated. Connecting blue arrows 

indicate direct interactions, yellow arrows indicate interactions that are in the base but do not 

form part of the network and overlaid cyan lines represent canonical pathways. Gene 

names/symbols within network A, from top to bottom, left to right: Neuregulin 1, Dopamine D3 

receptor, Reelin, ERK1/2, MEK1/2, NRSF, ESR1 (nuclear), c-Fos, c-Jun/c-Fos, JunD/c-Fos, PR 

(nuclear) and AP-1; B, from top to bottom, left to right: Neuregulin 1, Dopamine D3 receptor, 

Reelin, ErbB3, ErbB2, EGFR, SOS, Shc,GRB2, c-Raf-1,  PAFAH gamma, H-Ras, c-Src, ERK1/2, 

MEK1/2,NRSF, SP3, c-Myc, ESR1 (nuclear), c-Fos, c-Jun/c-Fos, JunD/c-Fos, RARalpha, PR (nuclear), 

c-Jun and AP-1; and C, from top to bottom, left to right: Dopamine D3 receptor,  Reelin, ErbB3, 

ErbB2,  EGFR, GAD1, c-Src, NRSF, c-Myc, c-Fos, c-Jun/c-Fos, JunD/c-Fos, c-Jun and AP-1. [Figure 

presented on opposite page]. 
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5.3.4 NRSF modulation in response to mood stabilising drugs 

As our gene expression data showed that 7/9 of the significantly 

modulated genes were down-regulated and NRSF which predominantly 

functions as a transcriptional repressor was identified as an important 

regulator of our gene set, we addressed predicted NRSF binding sites using 

ENCODE data from the Transcription Factor ChIP-seq track (The ENCODE 

Project Consortium, 2011, Rosenbloom et al., 2013) on the UCSC Genome 

Browser. As shown in Table 5.2, this identified NRSF binding at the promoter 

regions (within 5 Kb of the transcription start site, TSS) of DRD3 (transcript 

variant a, e and g), FOS, GAD1, JUN, NRG1 (transcript variant HRG-gamma1/2/3, 

HRG-beta1/d-, 2- and 3b, ndf43/b/c, HRG-alpha and SMDF), PAFAH1B3 and 

RGS4 (transcript variant 2/3) which, with the  exception of JUN and PAFAH1B3, 

were all down-regulated in response to 1 hour treatment with sodium valproate 

(or lithium with respect to FOS). We addressed NRSF mRNA levels in response 

to 1 hour treatment with drugs affecting mood using SH-SY5Y cDNA generated 

for qPCR arrays outlined in this study. The primer set used targets all isoforms 

of NRSF. NRSF expression was down-regulated following treatment with the 

mood stabilisers sodium valproate (fold change, -1.77; SD 0.11; *P<0.05) and 

lithium (fold change, -1.50; SD 0.19; ***P<0.001), and up-regulated by cocaine 

whereas amphetamine treatment had no effect on NRSF mRNA levels under the 

time course and drug concentration used (Figure 5.5).  
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Figure 5.5. Expression profiling of NRSF mRNA in SH-SY5Y cells following 1 hour 

treatment with mood modifying drugs. Bars represent the average log2 fold change in NRSF 

expression (primer set targets all isoforms of NRSF) of treated cells versus control cells 

analysed using the Delta-Delta Ct method. Each sample was measured in triplicate and 

normalised to ACTB expression. RT-qPCR data is representative of 3 biological replicates. Error 

bars represent the SD for relative fold change between experimental replicates. Significant 

changes in expression between treated and control cells were determined using a two-tailed 

student t-test. * P<0.05, *** P<0.001. Abbreviations: Amp, amphetamine; LiCl, lithium chloride; 

SV, sodium valproate.   
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Table 5.2. Predicted NRSF regulation of genes affecting mood. 

Gene Locus Strand NRSF site Size 
(Bp) 

Position 

ACE chr17:61554422-61575741 + chr17:61553914-61554174 260 -508 
ACE chr17:61554422-61575741 + chr17:61554504-61554774 270 82 
ACE chr17:61554422-61575741 + chr17:61556270-61556594 324 1848 
ACE chr17:61554422-61575741 + chr17:61557174-61557444 270 2752 
ACE chr17:61554422-61575741 + chr17:61558309-61558579 270 3887 
ADRBK2 chr22:25960861-26125258 + chr22:25961290-25961560 270 429 
ADRBK2 chr22:25960861-26125258 + chr22:26052841-26053085 244 91980 
ADRBK2 chr22:25960861-26125258 + chr22:26097050-26097320 270 136189 
ARNTL chr11:13277734-13387266 + chr11:13283216-13283586 370 5482 
ARNTL chr11:13277734-13387266 + chr11:13298458-13299341 883 20724 
ARNTL chr11:13277734-13387266 + chr11:13310624-13311040 416 32890 
ARNTL chr11:13277734-13387266 + chr11:13312905-13313275 370 35171 
ARNTL chr11:13277734-13387266 + chr11:13351630-13351900 270 73896 
ARNTL chr11:13277734-13387266 + chr11:13361071-13361575 504 83337 
ARNTL chr11:13277734-13387266 + chr11:13364729-13364973 244 86995 
ARNTL chr11:13277734-13387266 + chr11:13365612-13366116 504 87878 
BCR chr22:23522552-23660224 + chr22:23525622-23525892 270 3070 
BCR chr22:23522552-23660224 + chr22:23546679-23546949 270 24127 
BCR chr22:23522552-23660224 + chr22:23562075-23562399 324 39523 
BCR chr22:23522552-23660224 + chr22:23566052-23566322 270 43500 
BCR chr22:23522552-23660224 + chr22:23591914-23592184 270 69362 
BCR chr22:23522552-23660224 + chr22:23624008-23624332 324 101456 
BCR chr22:23522552-23660224 + chr22:23647903-23648174 271 125351 
BCR chr22:23522552-23660224 + chr22:23651156-23651400 244 128604 
BDNF chr11:27676442-27743605 - chr11:27667673-27667943 270 -8499 
BDNF chr11:27676442-27743605 - chr11:27671454-27671716 262 -4726 
BDNF chr11:27676442-27743605 - chr11:27680076-27680346 270 63259 
BDNF chr11:27676442-27743605 - chr11:27721240-27721484 244 22121 
BDNF chr11:27676442-27743605 - chr11:27723005-27723329 324 20276 
BDNF chr11:27676442-27743605 - chr11:27739843-27740167 324 3438 
BDNF chr11:27676442-27743605 - chr11:27740692-27741122 430 2483 
BDNF chr11:27676442-27743605 - chr11:27741795-27742502 707 1103 
BDNF chr11:27676442-27743605 - chr11:27742701-27743071 370 534 
BDNF chr11:27676442-27743605 - chr11:27743607-27744258 651 +2 
BDNF chr11:27676442-27743605 - chr11:27744566-27744890 324 +961 
CASP8 chr2:202098166-202152434 + chr2:202096900-202097280 380 -1266 
CASP8 chr2:202098166-202152434 + chr2:202098061-202098441 380 -105 
CASP8 chr2:202098166-202152434 + chr2:202122713-202123093 380 24547 
CRH chr8:67088612-67090846 - chr8:67089099-67090281 1182 565 
CRH chr8:67088612-67090846 - chr8:67090287-67090659 372 187 
CRH chr8:67088612-67090846 - chr8:67090956-67091280 324 +110 
CRH chr8:67088612-67090846 - chr8:67091915-67092285 370 +1069 
CRH chr8:67088612-67090846 - chr8:67098519-67098889 370 +7673 
DISC1 chr1:231762561-232177019 + chr1:231795960-231796330 370 33399 
DISC1 chr1:231762561-232177019 + chr1:231814930-231815200 270 52369 
DISC1 chr1:231762561-232177019 + chr1:231925791-231926295 504 163230 
DISC1 chr1:231762561-232177019 + chr1:231963016-231963520 504 200455 
DISC1 chr1:231762561-232177019 + chr1:231964053-231964309 256 201492 
DISC1 chr1:231762561-232177019 + chr1:232067746-232067990 244 305185 
DISC1 chr1:231762561-232177019 + chr1:232148522-232148892 370 385961 
DRD3 chr3:113847557-113918254 - chr3:113871366-113871690 324 46564 
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DRD3 chr3:113847557-113918254 - chr3:113874262-113874642 380 43612 
DRD3 chr3:113847557-113918254 - chr3:113897607-113898013 406 20241 
DRD3 chr3:113847557-113918254 - chr3:113898443-113898813 370 19441 
DRD4 chr11:637305-640705 + chr11:640330-640654 324 3025 
DTNBP1 chr6:15523032-15663289 - chr6:15552018-15552288 270 111001 
DTNBP1 chr6:15523032-15663289 - chr6:15621994-15622224 230 41065 
DTNBP1 chr6:15523032-15663289 - chr6:15662506-15662830 324 459 
FKBP5 chr6:35541362-35696397 - chr6:35656504-35656848 344 39549 
FKBP5 chr6:35541362-35696397 - chr6:35687515-35687759 244 8638 
FKBP5 chr6:35541362-35696397 - chr6:35695292-35695562 270 835 
FKBP5 chr6:35541362-35696397 - chr6:35695873-35696103 230 294 
FKBP5 chr6:35541362-35696397 - chr6:35699743-35700105 362 -3346 
FOS chr14:75745481-75748937 + chr14:75743830-75744074 244 -1651 
FOS chr14:75745481-75748937 + chr14:75745296-75745800 504 -185 
GABRA5 chr15:27111866-27194357 + chr15:27110041-27110545 504 -1825 
GABRA5 chr15:27111866-27194357 + chr15:27111625-27112129 504 -241 
GAD1 chr2:171673200-171717659 + chr2:171670663-171671101 438 -2537 
GAD1 chr2:171673200-171717659 + chr2:171671290-171671546 256 -1910 
GAD1 chr2:171673200-171717659 + chr2:171672190-171672567 377 -1010 
GAD1 chr2:171673200-171717659 + chr2:171679546-171679776 230 6346 
GAD1 chr2:171673200-171717659 + chr2:171701873-171702253 380 28673 
GRIK3 chr1:37261128-37499844 - chr1:37269486-37269856 370 229988 
GRIK3 chr1:37261128-37499844 - chr1:37301874-37302144 270 197700 
GRIK3 chr1:37261128-37499844 - chr1:37329834-37330078 244 169766 
GRIK3 chr1:37261128-37499844 - chr1:37331752-37332256 504 167588 
GRIK3 chr1:37261128-37499844 - chr1:37332540-37332784 244 167060 
GRIK3 chr1:37261128-37499844 - chr1:37388506-37388750 244 111094 
GRIK3 chr1:37261128-37499844 - chr1:37389788-37390253 465 109591 
GRIK3 chr1:37261128-37499844 - chr1:37411488-37411732 244 88112 
GRIK3 chr1:37261128-37499844 - chr1:37431706-37432281 575 67563 
GRIK3 chr1:37261128-37499844 - chr1:37486267-37486654 387 13190 
GRIK3 chr1:37261128-37499844 - chr1:37494616-37494860 244 4984 
GRIK3 chr1:37261128-37499844 - chr1:37504779-37505043 264 -4935 
GRM3 chr7:86273230-86494192 + chr7:86290343-86290599 256 17113 
GRM3 chr7:86273230-86494192 + chr7:86322086-86322456 370 48856 
GRM3 chr7:86273230-86494192 + chr7:86476174-86476554 380 202944 
GRM3 chr7:86273230-86494192 + chr7:86497476-86497720 244 +3284 
JUN chr1:59246463-59249785 - chr1:59249472-59249885 413 -100 
MAG chr19:35782989-35820133 + chr19:35796870-35797100 230 13881 
MAG chr19:35782989-35820133 + chr19:35809956-35810280 324 26967 
MAOA chrX:43,515,409-43,606,068 + - - - 
MLC1 chr22:50,497,820-50,523,781 - - - - 
MOBP chr3:39543557-39567857 + chr3:39540121-39540386 265 -3436 
MOBP chr3:39543557-39567857 + chr3:39558349-39558719 370 14792 
MOBP chr3:39543557-39567857 + chr3:39574318-39574698 380 +6461 
MTHFR chr1:11845787-11866160 - chr1:11845214-11845454 240 +573 
MTHFR chr1:11845787-11866160 - chr1:11850982-11851306 324 14854 
MTHFR chr1:11845787-11866160 - chr1:11856563-11856793 230 9367 
MTHFR chr1:11845787-11866160 - chr1:11857775-11857960 185 8200 
MTHFR chr1:11845787-11866160 - chr1:11858618-11858699 81 7461 
MTHFR chr1:11845787-11866160 - chr1:11863764-11864034 270 2126 
MTHFR chr1:11845787-11866160 - chr1:11865502-11865882 380 278 
MTHFR chr1:11845787-11866160 - chr1:11866038-11866425 387 -265 
NAPG chr18:10525873-10552766 + chr18:10525815-10526242 427 -58 
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NCAM1 chr11:112831969-113092626 + chr11:112831909-112832179 270 -60 
NCAM1 chr11:112831969-113092626 + chr11:112977293-112977549 256 145324 
NCAM1 chr11:112831969-113092626 + chr11:113008930-113009200 270 176961 
NCAM1 chr11:112831969-113092626 + chr11:113011853-113012123 270 179884 
NCAM1 chr11:112831969-113092626 + chr11:113023160-113023664 504 191191 
NCAM1 chr11:112831969-113092626 + chr11:113074175-113074445 270 242206 
NR1D1 chr17:38249037-38256973 - chr17:38244467-38244847 380 +4570 
NR1D1 chr17:38249037-38256973 - chr17:38254215-38254595 380 2378 
NR1D1 chr17:38249037-38256973 - chr17:38255228-38255666 438 1307 
NR1D1 chr17:38249037-38256973 - chr17:38256685-38257094 409 -121 
NR1D1 chr17:38249037-38256973 - chr17:38257324-38257828 504 -351 
NR1D1 chr17:38249037-38256973 - chr17:38264445-38264769 324 -7472 
NR3C1 chr5:142657496-142783254 - chr5:142784785-142785394 609 -2140 
NRG1 chr8:31496911-32622558 + chr8:31499444-31499814 370 2533 
NRG1 chr8:31496911-32622558 + chr8:31612484-31612740 256 115573 
NRG1 chr8:31496911-32622558 + chr8:31629195-31629565 370 132284 
NRG1 chr8:31496911-32622558 + chr8:31652781-31653242 461 155870 
NRG1 chr8:31496911-32622558 + chr8:31691004-31691508 504 194093 
NRG1 chr8:31496911-32622558 + chr8:31817830-31818086 256 320919 
NRG1 chr8:31496911-32622558 + chr8:31896212-31896582 370 399301 
NRG1 chr8:31496911-32622558 + chr8:32084240-32084744 504 587329 
NRG1 chr8:31496911-32622558 + chr8:32122327-32122831 504 625416 
NRG1 chr8:31496911-32622558 + chr8:32189091-32189595 504 692180 
NRG1 chr8:31496911-32622558 + chr8:32191794-32192298 504 694883 
NRG1 chr8:31496911-32622558 + chr8:32200953-32201685 732 704042 
NRG1 chr8:31496911-32622558 + chr8:32245491-32245735 244 748580 
NRG1 chr8:31496911-32622558 + chr8:32276508-32276752 244 779597 
NRG1 chr8:31496911-32622558 + chr8:32284202-32284706 504 787291 
NRG1 chr8:31496911-32622558 + chr8:32392615-32392985 370 895704 
NRG1 chr8:31496911-32622558 + chr8:32405958-32406282 324 909047 
NRG1 chr8:31496911-32622558 + chr8:32406492-32406892 400 909581 
NRG1 chr8:31496911-32622558 + chr8:32411341-32411845 504 914430 
NRG1 chr8:31496911-32622558 + chr8:32487206-32487506 300 990295 
NRG1 chr8:31496911-32622558 + chr8:32488853-32489109 256 991942 
NRG1 chr8:31496911-32622558 + chr8:32503654-32504024 370 1006743 
NRG1 chr8:31496911-32622558 + chr8:32546371-32546746 375 1049460 
NRG1 chr8:31496911-32622558 + chr8:32572641-32573145 504 1075730 
NRG1 chr8:31496911-32622558 + chr8:32581201-32581705 504 1084290 
NRG1 chr8:31496911-32622558 + chr8:32582687-32583047 360 1085776 
PAFAH1B3 chr19:42801185-42806952 - chr19:42806435-42806939 504 -13 
PER3 chr1:7844714-7905237 + ~14 Kb upstream of 5’UTR  - - 
PDLIM5 chr4:95373038-95509370 + chr4:95372903-95373283 380 -135 
PDLIM5 chr4:95373038-95509370 + chr4:95406777-95407007 230 33739 
PDLIM5 chr4:95373038-95509370 + chr4:95418920-95419164 244 45882 
PDLIM5 chr4:95373038-95509370 + chr4:95455973-95456203 230 82935 
PDLIM5 chr4:95373038-95509370 + chr4:95456267-95456511 244 83229 
PDLIM5 chr4:95373038-95509370 + chr4:95471601-95471831 230 98563 
PDLIM5 chr4:95373038-95509370 + chr4:95499407-95499663 256 126369 
RELN chr7:103112231-103629963 - chr7:103127865-103128245 380 501718 
RELN chr7:103112231-103629963 - chr7:103276613-103276992 379 352971 
RELN chr7:103112231-103629963 - chr7:103297949-103298179 230 331784 
RELN chr7:103112231-103629963 - chr7:103301028-103301258 230 328705 
RELN chr7:103112231-103629963 - chr7:103354935-103355205 270 274758 
RELN chr7:103112231-103629963 - chr7:103438111-103438481 370 191482 
RELN chr7:103112231-103629963 - chr7:103451010-103451107 97 178856 
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RELN chr7:103112231-103629963 - chr7:103484281-103484449 168 145514 
RELN chr7:103112231-103629963 - chr7:103491745-103492249 504 137714 
RELN chr7:103112231-103629963 - chr7:103559848-103560078 230 69885 
RELN chr7:103112231-103629963 - chr7:103580845-103581215 370 48748 
RELN chr7:103112231-103629963 - chr7:103636658-103636861 203 -6898 
RFX4 chr12:106976685-107156582 + chr12:106975282-106975646 364 -1403 
RFX4 chr12:106976685-107156582 + chr12:106975776-106976119 343 -909 
RFX4 chr12:106976685-107156582 + chr12:107147300-107147544 244 170615 
RGS4 chr1:163038396-163046592 + chr1:163039054-163039341 287 658 
SLC12A6 chr15:34522197-34630265 - chr15:34516950-34517512 562 +5247 
SLC12A6 chr15:34522197-34630265 - chr15:34610582-34611086 504 19179 
SLC12A6 chr15:34522197-34630265 - chr15:34630069-34630393 324 -128 
SLC12A6 chr15:34522197-34630265 - chr15:34634991-34635543 552 -4726 
SLC6A2 chr16:55689542-55737700 + chr16:55686047-55686317 270 -3495 
SLC6A2 chr16:55689542-55737700 + chr16:55689638-55689908 270 96 
SLC6A2 chr16:55689542-55737700 + chr16:55690575-55690845 270 1033 
SLC6A2 chr16:55689542-55737700 + chr16:55693927-55694197 270 4385 
SLC6A2 chr16:55689542-55737700 + chr16:55695818-55696088 270 6276 
SLC6A2 chr16:55689542-55737700 + chr16:55696686-55696956 270 7144 
SLC6A2 chr16:55689542-55737700 + chr16:55744402-55744761 359 +7061 
SLC6A2 chr16:55689542-55737700 + chr16:55746277-55746521 244 +8821 
SLC6A4 chr17:28,523,378-28,562,954 - - - - 
SULT1A1 chr16:28616908-28634907 - chr16:28621167-28621407 240 13500 
TF chr3:133419211-133497850 + chr3:133461483-133461863 380 42272 
TF chr3:133419211-133497850 + chr3:133465027-133465407 380 45816 
TF chr3:133419211-133497850 + chr3:133472690-133472920 230 53479 
TIMELESS chr12:56810157-56843200 - chr12:56811537-56811907 370 31293 
TIMELESS chr12:56810157-56843200 - chr12:56842752-56843263 511 -63 
TPH2 chr12:72332626-72426221 + chr12:72332400-72332889 489 -226 
TPH2 chr12:72332626-72426221 + chr12:72374868-72375372 504 42242 
TPH2 chr12:72332626-72426221 + chr12:72410895-72411165 270 78269 
XBP1 chr22:29190548-29196560 - chr22:29196394-29196960 566 -400 
XBP1 chr22:29190548-29196560 - chr22:29198252-29198482 230 -1922 

 

 

Note: NRSF binding sites over the top 10 affected genes across all drug treatments from 

Transcription Factor ChIP-seq from ENCODE, version 4. Bold font indicates genes significantly 

affected by drug challenge. Negative and positive values under Position represent the location of 

the NRSF site upstream of the gene transcription start site and downstream of the 3’UTR, 

respectively. Values not assigned +/- represent binding sites within the gene sequence. For 

genes with multiple transcripts, binding site positions are with respect to the largest isoform.    
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5.3.5 Extension of the NRSF regulatory network to microRNA (miRNA) 

genes through in silico analysis 

Dysregulation of miRNA genes has been widely implicated in disease 

pathways, including several neuropsychiatric conditions such as depression, 

schizophrenia and drug addiction, reviewed in Im and Kenny (2012). GWAS 

have identified genetic variants within miRNA gene loci or their target 

sequences as being significantly correlated with disease pathways (Liu et al., 

2012a, Huan et al., 2015). This has recently been demonstrated for non-coding 

SNPs within the MIR137 gene in predicting susceptibility to schizophrenia (The 

Schizophrenia Psychiatric GWAS Consortium, 2011, Ripke et al., 2013). The 

intronic location of these SNPs suggests a regulatory function which could act to 

modify the levels of transcription of the target gene, for example through 

altering binding site motifs of transcription factors or epigenetic regulators. In 

the previous chapter we presented data to suggest that NRSF may be one 

mechanism operating at the MIR137 gene locus in response to cocaine 

treatment. The potential role for NRSF in regulating the MIR137 gene was 

identified from bioinformatic analysis of the region, and validated through ChIP 

and reporter gene studies which showed that NRSF could bind to and modulate 

the transcriptional activity of an internal promoter VNTR within this miRNA 

gene in an allele-specific and stimulus-inducible manner (Warburton et al., 

2014). The existence of extensive double-feedback mechanisms between the 

NRSF-signalling complex and the brain-related miRNAs has been suggested 

based on computational analysis of the presence of NRSF recognition sites 

termed NRSEs (neuron restrictive silencing elements) within 25 Kb (Wu and 

Xie, 2006) and 100 Kb (Johnson et al., 2008) of miRNA genes. These studies 
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identified a total of 21 miRNA genes based on NRSEs discovered through 

position weight matrices (PWMs), which are probabilistic representations of 

signals in DNA or protein sequences which can be used to model approximate 

patterns of DNA-protein or protein-protein interactions; however they did not 

recognise the recently validated NRSF target gene MIR137 (Warburton et al., 

2014, Soldati et al., 2013), which was identified from in silico analysis of human 

ENCODE ChIP-seq data (Warburton et al., 2014). To extend these previous 

analyses of NRSF-miRNA interactions, which may be an important regulatory 

network involved in neurological disease processes due to its potential to 

modulate hundreds of downstream target genes in response to environmental 

stimuli, we intersected data downloaded from the UCSC Genome Browser 

(https://genome.ucsc.edu/) for global NRSF binding sites based on ENCODE 

ChIP-seq data with precursor sequences for miRNA genes plus their upstream 

10 Kb flank sequence using the online platform Galaxy (https://usegalaxy.org/), 

see Methods section 2.2.6.8. This identified 335 human miRNA genes bound by 

NRSF (Appendix 6), 32 of which had enrichment of this transcription factor 

within the first 500 bp of sequence 5’ of the precursor (pre)-miRNA sequence, 

Table 5.3; an arbitrary value used as a cut-off for defining the proximal 

promoter region based on reporter gene analysis of the internal MIR137 

promoter (Imir137) and the labs previous work on NRSE-like motifs within 

promoter sequences of neuropeptide genes that are situated within close 

proximity of the major TSS (Warburton et al., 2014, Coulson et al., 1999, Quinn 

et al., 2002, Spencer et al., 2006, Gillies et al., 2009). Of the 335 miRNAs 

identified from our in silico analysis, 14 of these (miR-9-1, -9-3, -29b-1, -95,        

-124-2,   -124-3,   -132,   -135b,  -138-1;   -153-1,   -212,  -218-2,  -330  and  -346)   

https://genome.ucsc.edu/�
https://usegalaxy.org/�
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Table 5.3. Predicted NRSF regulation of human miRNA genes 

MicroRNA    Type Host Gene Description Same 
strand 

Protein 
coding 

Repeat type Repeat 
position (bp) 

NRSF BS 
position (bp) 

RNA     
Pol II 

binding 

CGI 

miR-132 * Intergenic,  
-4.1 Kb  HIC1 Hypermethylated in 

cancer 1 X  
Low complexity 
G_rich 

-2,370 

Overlaps   
miR-212 * Intergenic,  

-3.8 Kb  
-1,998 

miR-92b * † Intergenic,  
-0.3 Kb  

THBS3 Thrombospondin 3  X  Low complexity 
GC_rich 

-2 -85   

miR-484 * Exonic NDE1 Nuclear distribution E 
(nudE) homolog 1  

  Low complexity 
GC_rich 

-3 Overlaps  X 

miR-636 Intronic SRSF2 Serine/arginine-rich 
splicing factor 2  

  Low complexity 
GC_rich 

Overlaps Overlaps   

miR-760 Intronic BCAR3 Breast cancer anti-
estrogen resistance 3 

X  Low complexity 
GC_rich 

-75 -266   

miR-3175 Intronic CHD2 Chromodomain helicase 
DNA binding protein 2, 
transcript variant 2 

  Low complexity 
GC_rich 

-187 Overlaps   

miR-3181 Intronic CYLD Cylindromatosis (turban 
tumor syndrome) 

  Low complexity 
GC_rich 

-46 -195   

miR-21 * Intergenic,  
+0.7 Kb   

VMP1 Vacuole membrane 
protein 1 

  Simple tandem -69 Overlaps  X 

miR-137 * Exonic MIR137HG MIR137 Host Gene, non-
coding RNA 

 X Simple tandem -6 Overlaps   

miR-199a-1 Intronic DNM2 Dynamin 2 X  Simple tandem -303 -255  X 
miR-935 Exonic CACNG8 Calcium channel, voltage-

dependent, gamma 
subunit 8  

  Simple tandem -260 Overlaps   

miR-2277 Exonic,  
3' UTR 

FAM172A Family with sequence 
similarity 172, member A 

  Simple tandem -432 Overlaps   
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MicroRNA    Type Host Gene Description Same 
strand 

Protein 
coding 

Repeat type Repeat 
position (bp) 

NRSF BS 
position (bp) 

RNA     
Pol II 

binding 

CGI 

miR-3188 Intergenic,  
+0.5 Kb  

JUND Jun D proto-oncogene  X  Simple tandem -56 Overlaps  -150 bp 

miR-3195 Exonic TAF4 TAF4 RNA polymerase II, 
TBP-associated factor 

X  Simple tandem -14 -377   

miR-4289 Intergenic,  
-94 Kb  

LOC286238 Uncharacterised protein   Simple tandem -178 Overlaps  X 

miR-1289-1 Intergenic,  
-1 Kb 

CEP250 Centrosomal protein 
250kDa 

X  SINE, Alu -75 -479  -1 Kb 

miR-1287 Exonic PYROXD2 Pyridine nucleotide-
disulphide oxidoreductase 
domain 2 

  SINE, MIR -260 Overlaps -20 Kb at 
PYROXD2 

TSS 

X 

miR-3191 Intronic BBC3 BCL2 binding component 
3, nuclear gene encoding 
mitochondrial protein 

  SINE, MIR -57 -413  -1 Kb 

miR-3193 Intergenic,  
+0.7 Kb  

ID1 Inhibitor of DNA binding 
1, dominant negative 
helix-loop-helix protein 

  SINE, MIR -228 Overlaps  -1 Kb 

miR-2114 Intergenic, 
+0.3 Kb   

LINC00894 Long intergenic non-
protein coding RNA 894  

 X LINE, CR1 -85 -307 -25 Kb of 
pre-miR 

X 

miR-4258 Intronic CKS1B CDC28 protein kinase 
regulatory subunit 1B 

  LINE, L2 -58 -321  X 

miR-210 * Intronic MIR210HG MIR210 Host Gene, non-
coding RNA 

 X Simple tandem; 
SVA_A 

-221; 
+50 Kb 

Overlaps   

miR-658 Exonic, 5' 
UTR 

ANKRD54 Ankyrin repeat domain 54    Simple tandem; 
SVA_D 

-1,229; 
+50 Kb 

Overlaps   

miR-345 * TE Intergenic,  
-1.3 Kb  

SLC25A29 Solute carrier family 25 
(mitochondrial 
carnitine/acylcarnitine 
carrier), member 29 

X  SINE, MIR; SVA_D Overlaps,            
-126 Kb 

-496  X 

miR-330 * TE Intronic EML2 Echinoderm microtubule 
associated protein like 2  

  SINE, MIR; SVA_D Overlaps,           
-8,434 

Overlaps  X 
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MicroRNA    Type Host Gene Description Same 
strand 

Protein 
coding 

Repeat type Repeat 
position (bp) 

NRSF BS 
position (bp) 

RNA     
Pol II 

binding 

CGI 

miR-422a TE Intergenic, 
+36 Kb  

DAPK2 Death-associated protein 
kinase 2 

  SINE, MIR;  
LINE, L2;  
SVA_D 

Overlaps;  
-276;                   
-929/+771 Kb 

Overlaps  X 

miR-607 TE Intergenic,  
-3.5 Kb  

LCOR Ligand dependent nuclear 
receptor corepressor 

X  SINE, MIR; SVA_E Overlaps;           
-112 Kb 

-326  X 

miR-423/3184 Intronic NSRP1 Nuclear speckle splicing 
regulatory protein 1 

  hAT-Charlie DNA 
TE; SINE, Alu; 
LINE, L1 

-465; -787;     
-1,541 

-35  X 

miR-138-1 Intergenic,  
-128 Kb 

TOPAZ1 Testis and ovary specific 
PAZ domain containing 
protein 1 

  hAT-Charlie DNA 
TE; LINE, L2; LTR, 
ERVL 

-189; -1,926;          
-3,174 

-414  X 

miR-1205 † Intronic 

PVT1 Pvt1 oncogene, non-
coding RNA  X 

SINE, MIR;  
LTR, ERVL 

-299; 
 -5,232; 

-118; 
Overlaps 

 X miR-1208 † Intergenic, 
+49 Kb  

LINE, L2; hAT-
Charlie DNA TE; 
LTR, ERVL; SVA_D 

-737; -2,195; 
-2,525;  
-31 Kb 

NRSF BSs 
Overlap 
miRNA, LTR 
and SVA  

 
 
Note: NRSF binding of putative miRNA gene promoters defined as 5’ sequence within 500 bp of the precursor (pre)-miRNA. Same strand is with respect to the host 
gene and miRNA. Repeat position and NRSF binding site (BS) position is relative to the first base of the pre-miRNA sequence, which is +1 bp, unless stated otherwise. 
Negative and positive values mark upstream and downstream sequences, respectively. RNA Pol II and CpG islands overlap with the NRSF binding site within the 
putative promoter region unless stated otherwise; RNA Pol II binding within the proximity of the MIR2114 gene does not overlap with NRSF binding. Bold font 
indicates miRNAs which overlap with computational predictions of NRSF target miRNAs by Wu and Xie (2006), Johnson et al. (2008) and Gebhardt et al. (2014) based 
on NRSE position weight matrices and ENCODE ChIP-seq data. Underlined miRNAs represent novel NRSF targets identified in this study. *Validated NRSF target 
miRNAs (Soldati et al., 2013, Warburton et al., 2014, Johnson et al., 2008, Gao et al., 2012); † Part of a cluster of miRNAs located within close proximity of each other; 
TE Derived-from transposable elements. Abbreviations: CGI, CpG island; CR1, chicken repeat 1; ERVL, endogenous retroviral element; LINE, long interspersed nuclear 
element; MIR, mammalian-wide interspersed repeats; LTR, long terminal repeats; SINE, short interspersed nuclear element; SVA, SINE-VNTR-Alu; TBP, TATA box binding 
protein; TE, transposable element; TSS, transcription start site; UTR, untranslated region.   
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overlapped with previous reports by Wu and Xie (2006), Johnson et al. (2008) 

and Gebhardt et al. (2014), with miR-132/212, -138-1 and miR-330 identified 

as being enriched for NRSF binding within their proximal promoter regions; 

three of which have been validated as NRSF targets through ChIP and/or 

expression profiling following NRSF knock-down, Table 5.3 (Johnson et al., 

2008, Soldati et al., 2013, Otto et al., 2007, Gao et al., 2012). A further 5 miRNAs 

(miR-21, -92b, -210, -345, -484) identified from our in silico analysis have also 

been shown to be significantly regulated following conditional knockout of 

NRSF in mouse neural stem cells (Gao et al., 2012), with 22 miRNAs identified 

as novel NRSF targets. Similar to mechanisms operating at the Imir137 

promoter, binding of RNA Pol II, also predicted from ENCODE data, was found 

to overlap with NRSF sites at all of these putative promoter regions, with the 

exception of MIR2114 (Table 5.3). Overlapping CpG islands observed in half of 

the target miRNA gene set further supports a promoter function of these loci. To 

explore which of the identified miRNAs may also be regulated by repetitive 

elements embedded within their predicted promoter domains, as exemplified 

through the VNTR within the Imir137 promoter which supported differential 

reporter gene expression in vitro based on copy-number (Warburton et al., 

2014), we also intersected our gene list with data from the UCSC-based 

Repeating Elements by Repeat-Masker track (Jurka, 2000). Table 5.3 shows 

that there is enrichment of NRSF binding at repetitive elements within these 

putative promoter regions including simple tandem repeats and transposable 

elements (TEs) including long-terminal repeats (LTRs), such as endogenous 

retroviral elements (ERVL), and non-LTRs, such as long and short interspersed 

nuclear elements (LINEs/SINEs) and primate-specific SVAs (SINE-VNTR-Alu). 
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Enrichment at transposable elements supports previous findings by Johnson et 

al. (2006) that functional NRSEs have been duplicated and inserted at new 

positions in the human genome by transposon-dependent mechanisms. 

Furthermore, several TE-derived miRNAs have been determined within the 

human genome (Piriyapongsa et al., 2007), including miR-330, -345, -442a and -

607 identified from our in silico analysis; all of which have an SVA insertion 

within 120 Kb 5’ of their pre-miRNA sequence (except miR-422a which had SVA 

insertions ~929 Kb upstream and ~771 Kb downstream), Table 5.3.    

To explore whether the identified NRSF-target miRNAs have any 

overlapping roles in normal cellular and/or disease processes, pathway analysis 

was performed using DIANA-miRPath; a freely available web-based platform 

for in silico assessment of miRNA interactions based on experimentally 

validated miRNA targets (Vlachos et al., 2012). The top 20 significant pathways 

based on in-built meta-analysis algorithms are listed in Table 5.4. More than 

half of the pathways identified (several of which were shown to be significantly 

associated with gene expression changes in response to mood modifying drugs, 

Figure 5.2 and 5.3) have previously been implicated in mood disorders and 

other neuropsychiatric conditions such as schizophrenia, including the 

neurotrophin signalling pathway which is represented in Table 5.5. Of the 

experimentally validated miRNA target genes identified in this pathway, 23 

overlap with known or putative NRSF target genes (Warburton et al. (2015); 

Wu and Xie (2006), http://www.broadinstitute.org/~xhx/projects/NRSE/), 

including BDNF which is highlighted as a target for miR-137 (Hill et al., 2014); 

another validated NRSF target gene (Warburton et al., 2014, Soldati et al., 

2013). JUN, a gene shown to be significantly regulated in response to mood 

http://www.broadinstitute.org/~xhx/projects/NRSE/�
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stabilisers and as a predicted target of NRSF (Table 5.1 and 5.2), was also 

identified in the neurotrophin signalling network as a target of miR-212 which 

has been validated as having reciprocal interactions with MeCP2 (Im et al., 

2010); a member of the NRSF-signalling complex. This provides validity for our 

in silico predicted NRSF target miRNAs and identifies a set of candidate miRNAs 

that may important in neurological dysfunction. The remaining pathways 

identified as being significantly associated with our miRNA gene set are linked 

to cancer (Table 5.4); a pathological state which implicates perturbations in 

both NRSF- and miRNA-signalling pathways and possibly dynamic interaction 

between the two as discussed in Chapter 6.  

 

 

  



 

249 
 

Table 5.4. Top 20 KEGG pathways containing genes that are subject to regulatory control by 
predicted NRSF-regulated miRNAs 
 

KEGG pathway p-value Number 
of genes 

Number of 
miRNAs 

ErbB signalling pathway † 3.59E-24 54 27 
Focal adhesion 1.69E-22 94 32 
Prostate cancer 7.79E-22 51 28 
Neurotrophin signalling pathway *†  1.26E-20 61 30 
Wnt signalling pathway 1.70E-19 77 30 
Insulin signalling pathway 2.76E-18 65 26 
Long-term potentiation 1.07E-17 42 21 
Chronic myeloid leukaemia 1.07E-17 40 26 
Glioma 1.44E-17 41 26 
Melanoma 1.05E-16 38 26 
GnRH signalling pathway 1.63E-16 45 24 
Colorectal cancer 1.08E-15 34 26 
MAPK signalling pathway † 1.29E-15 111 30 
Dopaminergic synapse † 1.52E-15 61 26 
TGF-β signalling pathway † 4.83E-15 40 26 
Fc gamma R-mediated phagocytosis 8.61E-15 46 26 
Pathways in cancer 1.50E-13 146 33 
Endometrial cancer 1.83E-13 30 24 
Non-small cell lung cancer 6.39E-13 30 22 
Renal cell carcinoma 1.29E-12 39 24 

 

Note: NRSF-regulated miRNAs as determined by in silico analysis (see Table 5.3) were 
uploaded into the DIANA-miRPath pathway analysis web-server that utilises experimentally 
validated miRNA interactions derived from DIANA-TarBase v6.0. This software performs an 
enrichment analysis of microRNA gene targets in KEGG (Kyoto Encyclopaedia of Genes and 
Genomes) pathways. Bold font indicates pathways relevant to mood disorders, several of which 
overlap with pathways maps associated with different mood modifying drugs (†, see Figure 5.2 
and 5.3). *MicroRNAs and their gene targets implicated in this pathway are represented in 
Table 5.5. This data excludes miR-2114 as it was not in the database. Abbreviations: ErbB, v-
erb-b2 erythroblastic leukemia viral oncogene; GnRH, Gonadotropin-releasing hormone; TGF-β, 
transforming growth factor beta. 
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Table 5.5. Human miRNAs and their interacting gene targets from the KEGG neurotrophin 
signalling pathway 
 

miRNA Gene 
Hits 

Genes 

miR-21 * 3 NTRK3, MAP3K1, FOXO3 
miR-92b * 10 CAMK2A, FRS2, GSK3B, PIK3CB, PIK3R3, RAP1A, FASLG, CDC42, 

PIK3CA, RAP1B 
miR-132 * 14 AKT3, FRS2, IPK2, KRAS, MAPK1, NTRK3, PIK3R5, CAMK2D, CRK, 

FOXO3, MAP3K3, PIK3CA, SOS1, TRAF6 
miR-137 * 12 BDNF, CAMK2A, FRS2, GSK3B, MAP3K1,  PIK3R3, AKT2, CALM3, 

CDC42, CRKL, MAPKAPK2, MAPK10 
miR-199a 8 AKT3, GSK3B, MAP3K1, PIK3CB, SOS2, KIDINS220, MAPK8, 

MAP3K5 
miR-212 * 13 AKT3, FRS2, JUN, KRAS, MAPK1, NTRK3, RIPK2, CRK, FOXO3,  

MAP3K3, IKBKB, PIK3CA, SOS1 
miR-330 * 19 KRAS, MAPK1, NGFR, NTRK3, PIK3R3, PIK3R5, SOS2, CRK, 

FOXO3, GAB1, MAP2K1, NRAS,  PTPN11, RAP1A, RAP1B, RAF1, 
RPS6KA1, SOS1, SH2B3   

miR-345 * 3 MAP3K1, RPS6KA5, IRAK1 
miR-422a 1 IRAK3 
miR-423 4 NTRK2, CALM3, CRK, NGFR 
miR-484 * 4 CALM1, MAPKAPK2, PIK3CD, RPS6KA1 
miR-607 11 CALM1, FRS2, IRAK3, KRAS, MAP3K1, PSEN1, RIPK2, CAMK4, 

CRK, PTPN11, PIK3CA 
miR-636 1 AKT3 
miR-760 2 KIDINS220, NTRK2 
miR-935 1 NTRK3 
miR-1205 10 IKBKB, MAPK1, PIK3R5, RAPGEF1, CAMK2B, CAMK2G, NTRK2, 

PIK3R2, PTPN11,TP73    
miR-1208 9 MAPK1, SORT1, BRAF, CALM3, RAF1, FOXO3, MAP2K1, IRAK1,  

RAP1B 
miR-1287 1 PIK3CB 
miR-1289 1 SHC2 
miR-2277 2 BRAF, MAGED1 
miR-3175 2 CAMK2A, ARHGDIA 
miR-3188  2 FRS2, MAGED1 
miR-3191 6 MAPK1, NGFR, NTRK3, SORT1, NRAS, SH2B3, SOS1 
miR-4289 2 MAP3K1, MAPK8 

 
 
Note: Pathway identified as one of the top 20 KEGG (Kyoto Encyclopaedia of Genes and 
Genomes) processes based on genes that are subject to regulatory control by predicted NRSF-
regulated miRNAs (see Table 5.4). Bold font indicates miRNAs that overlap with computational 
predictions of NRSF target miRNAs by Wu and Xie (2006) and Johnson et al. (2008) or known or 
predicted NRSF target genes (Wu and Xie, 2006, Warburton et al., 2015). *Validated NRSF target 
miRNAs (Soldati et al., 2013, Warburton et al., 2014, Johnson et al., 2008, Gao et al., 2012). Data 
generated using the DIANA-miRPath pathway analysis software. 
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5.4 Discussion 

Understanding the mechanism of action for a drug to alter the cell 

phenotype, in addition to the initial cellular targets recognised by the drug, is 

important for both clinical application and pharmaceutical development. 

Transcriptome profiling allows for global scale interrogation of potential 

regulatory mechanisms involved in modulating cellular responses to a 

particular drug through the use of pathway analysis tools. The aim of this study 

was to address the effects of mood modifying drugs on the expression profile of 

a commercially available panel of genes associated with mood disorders by 

network analysis to compare and contrast their mode of action.  

We used two mood stabilisers (lithium and sodium valproate) and two 

mood stimulants (cocaine and amphetamine). Only the mood stabilisers 

reached statistical significance and interestingly they shared 5 genes in their 

top 8 most modified genes, Table 5.1; we therefore focused on this set of genes 

for further analysis. Valproate significantly modified 8 genes, lithium only two, 

GAD1 and FOS, with GAD1 being significantly down-regulated for both drugs. 

GAD1 encodes one of several forms of glutamic acid decarboxylase which is a 

key enzyme for the synthesis of the inhibitory neurotransmitter GABA. GAD1 is 

implicated from both genetic and functional analysis as a modulator of mood 

(Hettema et al., 2006, Lundorf et al., 2005, Weber et al., 2012, Karolewicz et al., 

2010, Thompson et al., 2009, Domschke et al., 2013). FOS and JUN proteins 

constitute the AP-1 transcription factor complex which was a target for 

modulation. These factors represent a family of proteins that heterodimerise to 

regulate the AP-1 DNA site (Quinn et al., 1989a, Takimoto et al., 1989, Quinn et 

al., 1989b, Quinn, 1991). Lithium and sodium valproate have both been 
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demonstrated to modulate the AP-1 complex (Ozaki and Chuang, 2002, Chen et 

al., 2008). The genes shared in common by the mood stabilisers sodium 

valproate and lithium were GAD1, NRG1, PER3, RELN and RGS4. The remainder, 

DRD3, JUN and PAFAH1B3 were specific for sodium valproate. Although some 

of these genes were modified with cocaine and amphetamine, the statistical 

significance was low, certainly lower than all the genes in the 9 most 

differentially expressed genes in Table 5.1. In previous chapters, we have 

addressed cocaine challenge in SH-SY5Y and demonstrated significant changes 

in the expression of genes involved in mental health. Specifically, data 

presented in Chapters 3 and 4 suggests an important role for cocaine-induced 

modulation of the BDNF and MIR137 gene loci in part through NRSF signalling. 

Both of these genes have been identified through genetic association to be 

important candidates in neuropsychiatric diseases including schizophrenia, 

major depression and addiction (The Schizophrenia Psychiatric GWAS 

Consortium, 2011, Ripke et al., 2013, Thompson Ray et al., 2011, Dunham et al., 

2009, Autry and Monteggia, 2012, Haerian, 2013, Cheah et al., 2014). Although 

BDNF was not shown to be significantly modulated by any of the drugs tested 

using the mood-array, expression likely reflects total mRNA for this gene and 

therefore transcripts which are highly expressed in SH-SY5Y cells will be over-

represented in the data. As shown in Figure 3.5A (Chapter 3), transcripts IV, VI 

and IX were highly expressed in this cell-line, with previous studies reporting 

that exons IV and VI account for approximately 80% of total BDNF mRNA 

(Garzon and Fahnestock, 2007). Consistent with our gene array dataset, cocaine 

treatment at 1 hour did not significantly affect the expression of these major 

transcripts, although was shown to modulate the levels of alternative messages 
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expressed from the locus (see Figure 3.5B-C, Chapter 3). A longer exposure 

time of 4 hours was shown to significantly regulate the co-ordinate expression 

of BDNF IV and VI. Since under the current experimental conditions the gene set 

targeting mood disorders did not respond as robustly to cocaine and 

amphetamine as to lithium and sodium valproate, we attempted to determine 

whether the significant mood stabiliser gene set defined a specific pathway or 

network of genes to explain their concerted response to drug exposure.  

Pathway analysis using both the Analyse Networks (Transcription 

Factors) and Filter by Disease algorithms available on the online pathway 

analysis software MetaCoreTM identified NRSF to be strongly associated with 

the pathways supporting these networks of genes. NRSF has a direct association 

with DRD3, GAD1 and RELN genes based on the network analysis, Figure 5.3. 

Bioinformatic analysis of predicted NRSF binding sites using ENCODE data from 

the Transcription Factor ChIP-seq track (The ENCODE Project Consortium, 

2011, Rosenbloom et al., 2013) identified NRSF binding at the promoter regions 

(defined as the sequence within 5 Kb of the TSS) of the FOS, NRG1 and RGS4 

genes, Table 5.2. This analysis also demonstrated NRSF binding sites in similar 

genomic locations on DRD3, GAD1, JUN, PAFAH1B3 and RELN. Although we did 

not address NRSF-mediated regulation of these genes in response to drug 

treatment, it would be interesting to follow-up these hypothetical interactions 

considering the role of this transcription factor in regulating the expression of 

genes important for neurodevelopment including BDNF, NeuroD and TrKB, all 

of which have been shown to be up-regulated in rodent neural stem cells as a 

result of NRSF down-regulation induced by sodium valproate treatment (Kim et 

al., 2007).  
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Aberrant signalling of NRSF and its target genes has been shown to be 

involved in the pathophysiology of several CNS disorders including 

schizophrenia (Loe-Mie et al., 2010), major depressive disorder (Otsuki et al., 

2010) and alcoholism and depression (Ukai et al., 2009), with genetic variants 

influencing age-related cognitive function (Miyajima et al., 2008b). More 

recently loss of NRSF has been highlighted as a major player in Alzheimer’s 

disease through dysregulation of genes implicated in cell death and stress 

response pathways (Lu et al., 2014). NRSF has the properties to modulate 

epigenetic parameters at its gene targets due to its association with a plethora 

of co-activators, such as members of the SWI/SNF family, which can modify 

histones or DNA by post-translational modifications (Loe-Mie et al., 2010). In 

Chapter 3, we demonstrated changes in the enrichment of active and inactive 

histone marks at distinct BDNF promoters in response to cocaine treatment at 

1, 4 and 24 hours which correlated with differential NRSF binding over the 

region and/or BDNF mRNA expression patterns. These epigenetic modifications 

could result in medium-to-long-term changes in gene expression that underlie 

drug exposure in addition to the immediate modulation of the transcriptome. 

Our data suggest that lithium and sodium valproate, with different initial 

cellular targets, may modulate related signalling pathways leading to 

overlapping cellular responses mediated in part by the NRSF pathway. It should 

be noted that we performed this experiment at 1 hour post exposure to capture 

an early response of the cell to the drug. As in any stimulus induction 

modification of gene expression many of these changes will be transient, 

especially in the short-term for transcription factors such as AP-1 and NRSF. 

This is in keeping with the transient response of AP-1 and NRSF in stimulus 



 

255 
 

inducible gene expression models the lab has previously observed at 1 hour 

post exposure (Gillies et al., 2009, Howard et al., 2008, Spencer et al., 2006, 

Quinn, 1991). A more extensive timescale would perhaps have demonstrated a 

different or related set of genes, nevertheless, our strategy allowed the 

observation of the differential gene set acting as a signature for the mood 

stabilisers and allows for future optimisation. 

Filtering our dataset by disease also identified ERK1/2 signalling along 

with the oestrogen receptor pathway as potentially an important regulatory 

network for this gene set (Figure 5.2). Oestrogen receptor signalling has been 

well documented in the modulation of behaviours relating to aggression 

(Nomura et al., 2002), anxiety and depression (Furuta et al., 2013). The action 

of sex hormones may in part explain why in conditions such as panic disorder 

these phenotypes are more prevalent among females. Our data would be 

consistent with GAD1 SNP variation being tentatively associated for the higher 

susceptibility of females to panic disorder (Weber et al., 2012) via modulation 

by oestrogen.  This oestrogen pathway could overlap with other transcription 

factor pathways identified in our analysis, for example synergistic action of the 

oestrogen and AP-1 pathways on gene expression (Fujimoto and Kitamura, 

2004). The extended networks identified in this study (AP-1, oestrogen and 

NRSF) may also work synergistically, for example NRSF activity is important for 

E2 stimulation of the cell cycle (Bronson et al., 2010) and oestrogen receptor B 

is enriched at NRSF binding sites (Le et al., 2013). Such interactions between 

these three pathways can be further modified by the glucocorticoid receptor, so 

linking these pathways to a major driver of mood (Karmakar et al., 2013, 

Abramovitz et al., 2008). Glucocorticoid sensitivity is strongly associated with 
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several mood related disorders (Spijker and van Rossum, 2012) and anti-

glucocorticoid drugs have been used in the treatment of such conditions 

(Wolkowitz and Reus, 1999, Wolkowitz et al., 1999, Gallagher et al., 2008). 

Mood disorder susceptibility has also been linked to glucocorticoid signalling 

through its modulation of the stress response along the hypothalamic-

pituitary–adrenal (HPA) axis (Spijker and van Rossum, 2012, Lupien et al., 

2009).   

As discussed in Chapter 4 and recently reviewed by Quinn et al. (2013), 

non-coding polymorphisms can influence the GxE response through modulation 

of gene expression in an allele-specific and stimulus-inducible manner, offering 

insight into the mechanisms underpinning such pathways and providing a 

functional correlate of disease. Variations in the regulatory sequences of 

transcriptional regulators, such as transcription factor binding sites, miRNA 

binding sites or the miRNA processing machinery, have the potential to 

modulate the expression of hundreds of downstream targets involved in these 

dynamic regulatory networks. The NRSF-signalling pathway, identified as an 

important regulatory mechanism implicated in mood disorders from 

enrichment analysis of cellular gene expression changes in response to mood 

modifying drugs (Warburton et al., 2015), was investigated for its potential to 

regulate extensive miRNA gene expression profiles by intersecting global NRSF 

binding sites predicted from ENCODE ChIP-seq data (March 2012 release) with 

the proximal promoter regions of miRNA genes, defined as the 500 bp flank 

sequence upstream of the pre-miRNA based on our recent characterisation of 

the Imir137 promoter (Warburton et al., 2014). This approach was 

implemented to extend previously defined in silico interactions between NRSF 
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and the brain-enriched miRNAs based on PWMs (Wu and Xie, 2006, Johnson et 

al., 2008); a method which failed to identify the recently validated NRSF target 

miR-137 (Warburton et al., 2014, Soldati et al., 2013). Analysis of repetitive 

elements within the regulatory sequences of the miRNA genes was also 

performed using the Repeat Master track on UCSC (human assembly, hg19) to 

identify potential forms of genetic variation and/or regulatory sequences that 

may function to alter the levels of transcription as previously demonstrated for 

the MIR137 VNTR (Warburton et al., 2014, Bemis et al., 2008).  

A total of 32 pre-miRNAs were identified from our in silico analysis; 22 of 

which were novel NRSF targets not previously stated in the literature (Table 

5.3). The miRNAs identified were enriched for repetitive elements including 

TEs; both LTRs and non-LTRs, the latter of which (mainly LINE2 elements) have 

previously been linked to NRSF binding site duplication in the human genome 

(Johnson et al., 2006). The full list of TE-derived NRSEs identified by Johnson et 

al. (2006) is not publically available and so comparisons could not be made with 

the NRSF binding sites found in this communication to overlap with TEs. 

Several of the NRSF target miRNAs identified in this study had SVA insertions 

(hominid-specific TEs) within 120 Kb of their pre-miRNA sequence (Table 5.3). 

These included miR-210, -330, -345, -658, -607, -1208 and -422a (two SVAs 

located ~929 Kb upstream and ~771 Kb downstream of miR-422a were 

observed). SVAs can present as regulatory domains as indicated from data 

within our group on the PARK7 and FUS SVAs, candidate genes for 

neurodegenerative disorders and cancer, which were shown to modulate gene 

expression in a reporter gene system (Savage et al., 2013, Savage et al., 2014). 

Pathway analysis of the miRNA gene set identified from our bioinformatic 
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assessment showed that 11 of the top 20 significantly associated pathways 

were enriched for processes implicated in neuropsychiatric disease, showing 

considerable cross-over with those networks identified from our enrichment 

analysis of gene expression changes associated with mood modifying drugs 

(Warburton et al., 2015). These included the ErbB and neurotrophin signalling 

pathways which are important for neurodevelopment, synaptic plasticity and 

neurotransmission, and members of which have been identified through genetic 

association or expression profiling in clinical samples to be important 

candidates in the pathophysiology of neuropsychiatric disease, reviewed in Mei 

and Nave (2014), Duman (2004) and Autry and Monteggia (2012). Analysis of 

experimentally validated miRNA target genes using the DIANA-miRPath 

pathway analysis software highlighted a number of hits that have also been 

implicated in NRSF signalling, including BDNF which has recently been 

identified as a target of miR-137 in human neural progenitor cells (Hill et al., 

2014). Our findings indicate a set of candidate miRNAs within the NRSF-

signalling pathway, some of which are novel targets, that overlap with cellular 

processes enriched for known mood disorder genes and could therefore be 

important modulators of disease networks underlying neuropsychiatric disease. 

Several of the identified NRSF target miRNAs contain repetitive elements within 

or in close proximity of their gene loci, including SVA insertions previously 

demonstrated to be capable of modifying the transcriptional landscape (Savage 

et al., 2013, Savage et al., 2014), which have the potential to modify the 

expression of the targeted miRNAs and thus associated downstream signalling 

cascades. Genetic variants embedded within these potential NRSF-regulatory 

networks, identified from pathway analysis as being central to mood 
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(Warburton et al., 2015), offers a means by which an individual’s genotype 

could influence inappropriate transcriptional responses to an environmental 

stressor, through disrupting the tightly coordinated balance of gene expression 

within the cell which over time could translate as a neuropsychiatric phenotype.    

 

5.5 Summary 

In summary, our data points to a cost effective and rapid assessment of 

expression changes in selected genes using GPR analysis, which can help 

delineate the pathways targeted by drugs to modify mood. In particular, we 

have identified dopamine and glutamine pathways as being important; perhaps 

not unexpectedly as the gene set is enriched for known genes involved in mood 

disorders. Alteration in the regulation of these pathways would be expected to 

modulate mood and is reflected in the range of drugs currently used in targeting 

these pathways. However the modulation of the AP-1 pathway and the 

involvement of factors such as NRSF and ERK1/2 highlight a more general 

modulation of neurotransmitter pathways in response to mood modifying 

drugs. These pathways could operate through dynamic interaction with miRNA 

regulatory networks as suggested from our in silico analysis of NRSF targeted 

miRNAs which overlap with genes and cellular processes relevant to mood 

modifying drug signalling pathways. This supports a role for extensive 

regulatory feedback mechanisms operating at the transcriptional/post-

transcriptional level in co-ordinating the fine-tuning of neuronal gene 

expression central to development, normal brain physiology and disease. Our 

model can therefore be used to determine mechanisms associated with off 

target and long term affects of particular drugs and can be extrapolated to 
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predict in vivo responses, utilised in the comparison of multiple drug regimes or 

used as an initial screening process to inform optimal drug design. 
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Chapter 6 

 

Is the NRSF-MIR137 Pathway a Common Mechanism in  

Disease Processes? 
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Part I: Addressing the NRSF-MIR137 Pathway in a Rodent Model 

of Cortical Spreading Depression (CSD)  

6.1 Introduction 

In Chapter 4, the presence of an internal promoter VNTR (Imir137 

promoter) within the human MIR137 schizophrenia candidate gene was 

validated in vitro using reporter gene constructs that were shown to modulate 

gene expression levels in an allele-specific and stimulus inducible manner. 

Distinct isoforms of NRSF and cellular challenge with cocaine, a known 

modulator of NRSF signalling (Chandrasekar and Dreyer, 2009) and a robust 

tissue culture model used in our lab for eliciting neuronal stimulation of 

pathways relevant to psychosis (Vasiliou et al., 2012, Warburton et al., 2014, 

Warburton et al., 2015), was shown to mediate differential expression at this 

locus, consistent with a GxE mechanism modifying the level of miR-137 

expression via this internal promoter. A growing number of animal models are 

being used to address GxE mechanisms in complex disease processes including 

anxiety, depression and schizophrenia (Sotnikov et al., 2014, Murgatroyd et al., 

2009, Turner and Burne, 2013). However, extrapolation of findings from animal 

studies to human-specific neurological disorders involving complex traits such 

as behaviour, cognition and emotion may not always be appropriate. A better 

understanding of the evolution of gene regulatory mechanisms is therefore 

necessary for meaningful cross-species comparisons of disease models.  

Conservation of promoters and regulatory elements governing the 

expression of highly conserved neuronal genes has been studied extensively in 

our lab. This is best exemplified through the TAC1 gene promoter whereby 
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introducing the human TAC1 gene locus tagged with the β-galactosidase gene 

into transgenic mice resulted in similar patterns of LacZ expression in the CNS 

to that reported for endogenous TAC1 mRNA expression in the rat (MacKenzie 

et al., 2000), demonstrating a high degree of conservation of the transcriptional 

mechanisms involved in regulating the expression of this neuropeptide gene 

across species. Human-specific expression of TAC1 was also observed in this in 

vivo model suggesting that species-specific patterns of gene expression are a 

function of divergent evolution of the underlying promoter sequence which in 

turn will influence the factors operating at these regulatory domains.  

In this chapter we set out to explore the evolutionary conservation of 

our recently characterised transcriptional network involving NRSF and MIR137 

(Warburton et al., 2014), which we hypothesise to be one regulatory 

mechanism that may be modified in response to neuronal insults or disease 

processes relevant to CNS dysfunction. To test this hypothesis in vivo, 

differential regulation of NRSF and MIR137 was addressed using a rodent 

model of cortical spreading depression (CSD), available through our 

collaboration with Dr Minyan Wang, Department of Biological Sciences, Xi’an 

Jiaotong-Liverpool University (XJTLU). CSD is a slow wave of depolarisation, 

characterised by depression of electroencephalography (EEG) activity, which 

propagates across the cortical surface of cerebral grey matter at a rate of 2 to 5 

mm/min (Leao, 1944). In animal models, CSD is usually induced by electrical 

stimulation, KCl (method used in this study) or glutamate but can also occur 

spontaneously in the brain under hypoxic, ischemic or hypoglycaemic 

conditions, with spontaneous recovery occurring over a prolonged time course 

(Kraig and Nicholson, 1978). It is associated with dramatic fluxes of ions into 
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and out of cells and neurotransmitter and neuromodulator release; the basic 

mechanism of CSD and its effect on neuronal tissue is summarised in Figure 

6.1. Both NRSF and miR-137 levels have been shown to be modulated in animal 

models of epilepsy and ischemia (Spencer et al., 2006, Song et al., 2011, Noh et 

al., 2012, Calderone et al., 2003); conditions that can induce CSD through 

perturbation of extracellular K+ levels (Lauritzen et al., 2011, Fabricius et al., 

2008). Furthermore, NRSF and miR-137 target several genes implicated in CSD, 

such as those encoding for the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate 

receptor and ion channel subunits (Noh et al., 2012, Chazot et al., 2002, 

Strazisar et al., 2014, Zhao et al., 2013), suggesting a potential role for the NRSF-

MIR137 pathway in modulating CSD. Like status epilepticus (a prolonged 

seizure) and cerebral ischemia, induced CSD in the rodent brain can activate 

persistent neurogenesis in the dentate gyrus and subventricular zone and 

produce new neuron-like cells in the caudate putamen and cortex, without 

neuronal damage which is characteristic of other cerebral insults (Yanamoto et 

al., 2005, Urbach et al., 2008), suggesting a potential neuroprotective role. NRSF 

and its co-repressors have been implicated in adult neurogenesis through 

modulation of stage-specific neuronal gene expression and maintenance of 

neural stem cells in an undifferentiated state (Gao et al., 2011). In addition, miR-

137 has been associated with adult neurogenesis through dynamic interaction 

with the epigenetic factors MeCP2 (methyl CpG binding protein 2) and EZH2 

(enhancer of zeste homolog 2), both of which have been shown to interact with 

NRSF to control neuronal development and differentiation (Szulwach et al., 

2010, Dietrich et al., 2012). Cross-talk between multiple epigenetic factors 
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↑ K+

↑ Glutamate

Experimental induction:
 Electrical stimulation
 KCl
 Glutamate

Extracellular space: 
 Shrinkage of 

extracellular space

 ↓ Na+ / Cl– / pH

 ↑ K+ / glutamate / 
nitric oxide / ATP

Neurons:
 Depolarisation
 Cellular swelling
 Na+ / Cl– influx
 K+ efflux

Vasculature:
 Dilation
 Constriction

Human triggers:
 Subarachnoid /intracranial 

haemorrhage
 Traumatic brain injury
 Ischemic stroke
 Seizure
 Migraine *

Cortical Spreading 
Depression

Astrocytes:
 Depolarisation
 Calcium waves
 K+ efflux / uptake
 ATP and eicosanoid release

Modulating factors:
 Genetic variants
 Epigenetic factors
 Hormones
 MicroRNA (?)

which converge on the NRSF signalling pathway, are important for controlling 

neuronal function and have previously been implicated in neurological 

dysfunction are explored as a novel and potentially important mechanism 

underlying CSD pathophysiology. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.1. Mechanisms of cortical spreading depression (CSD). Schematic representation 

of the basic mechanisms involved in CSD induction and propagation and its functional 

consequences in the brain. Spreading depression can occur in neuronal cells in several regions 

of the brain other than the cortex including the hippocampus, cerebellum and retina. In 

addition, there is growing support for an active role of astrocytes and the vasculature in CSD, 

rather than simply a passive or reactive role. * Associated with CSD but not conclusive. 
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6.2 Aims 

 Comparative sequence analysis of the MIR137 gene locus between humans 

and rats using reference genomes and sequencing data to determine cross-

species conservation  

 Gene expression profiling of MIR137 transcripts, NRSF isoforms and their 

potential target genes in the rat brain 

 Address the functional significance of sequence variation within the 

recently characterised internal MIR137 promoter between the human and 

rat genomes using reporter gene constructs  

 Chromatin immunoprecipitation (ChIP) analysis of NRSF, MeCP2 and EZH2 

binding of the predicted rat MIR137HG and internal MIR137 promoters to 

determine the epigenetic profile of MIR137 in different neuronal tissues  

 ChIP and gene expression profiling of MIR137 transcriptional regulation in 

rat cortical samples following induction of CSD to address regulatory 

mechanisms operating over the locus in response to neuronal insults  
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6.3 Results 

6.3.1 Comparative analysis of the MIR137 locus in human and rat 

genomes  

In silico analysis of evolutionary conserved regions (ECRs) over the 

MIR137 gene locus using the ECR Browser (http://ecrbrowser.dcode.org/) 

indicated strong mammalian conservation not only in exonic regions and the 

sequence encompassing MIR137 but also in intronic and intergenic regions, as 

determined by the height of peaks of sequence homology illustrated in Figure 

6.2. A more in depth analysis of mammalian conservation was carried out using 

the UCSC Genome Browser (http://genome. ucsc.edu/index.html). The RNA 

transcripts from which miR-137 is encoded are not annotated in the rat 

reference genome (Assembly rn5), Figure 6.3A. To address the percentage of 

sequence homology of the MIR137 transcripts between human and rat, 

sequence alignments were performed using BLASTN (basic local alignment 

search tool of nucleotide databases), an online interface for searching sequence 

similarities across DNA and protein databases (Altschul et al., 1997), available 

at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This aligned 48%, 50% and 

78% of the mRNA query sequences for MIR137HG (AK094607), AK311400 and 

AK309618 to the rat genome with percentage identities of 88%, 88% and 92%, 

respectively (Figure 6.3B).  

The MIR137 parent transcripts which encode for MIR137 were validated 

in the rat genome through RT-PCR analysis of cDNA extracted from different 

brain regions of male Sprague Dawley rats. Human-specific PCR primers 

spanning the MIR137HG, AK311400 and AK309618 mRNAs were used (see 

Table 2.1 for primer sequences). Due to sequence variation between the

http://ecrbrowser.dcode.org/�
http://blast.ncbi.nlm.nih.gov/Blast.cgi�
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Figure 6.2. Evolutionary conservation of the MIR137 gene locus. Conservation plot showing evolutionary conserved regions (ECRs) over the MIR137 gene 

locus across different species indicated on the right. Genomic alignments are with respect to the human reference genome represented by the line diagram at the 

top of the schematic; yellow boxes mark the exons, blue horizontal lines the introns and arrows the direction of transcription. The horizontal axis represents the 

sequence of the human genome. The height of each peak represents the number of nucleotides conserved in windows of 100 bp (% homology), whilst the width 

corresponds to the alignment length with the human base sequence. Parameters for defining ECRs were set to default values of 70% identity per 100 bp of 

sequence. ECRs are colour-coordinated based on function: red = intergenic regions; green = repetitive elements; salmon = intronic regions; yellow = untranslated 

regions. Image generated using the ECR Browser (http://ecrbrowser.dcode.org/).   

http://ecrbrowser.dcode.org/�


 

269 
 

human and rat reference genomes for the sequence targeted by the AK311400 

reverse primer, which also targets AK309618, a rat-specific primer was 

designed that corresponded to the same genomic location as the human primer. 

A primer set was also designed to span the highly conserved MIR137 sequence 

(99.1% sequence homology between rats and humans) and that of a second 

miRNA MIR2682 (89% sequence homology between rats and humans), located 

719 bp downstream of human MIR137 within the intronic region of transcripts 

AK311400 and AK309618 and partially overlapping the second exon of 

transcript AK309618, to check for any messages overlapping with this region 

that could give rise to MIR2682. The location of the PCR primers used for gene 

expression analysis with respect to the human and rat reference genomes are 

outlined in Figure 6.3A. Alignments of the human and rat miR-137 and miR-

2682 precursor (pre) sequences are displayed in Figure 6.3B. Several base pair 

variations are present between the human and rat pre-miR-2682 sequences, 

including one within the mature miR-2682 sequence itself which may prevent 

hairpin formation and function of this miRNA in the rat. As shown in Figure 

6.3D, the predicted size PCR product of 291 bp was observed for MIR137HG in 

the rat brain, the sequence of which was validated by sequencing analysis which 

showed 93.3% sequence homology with the human reference genome 

(Assembly hg19), suggesting that this gene is conserved in the rat. The most 5’ 

and 3’ exons of this transcript were not addressed in the rat therefore it is 

possible that this message is structurally distinct from the human transcript. 

Under the conditions tested, no bands were observed following PCR analysis 

using both human- and rat-specific primers targeting the AK311400 and 

AK309618 transcripts, which originate from the Imir137 promoter (Warburton,  
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* Rat (Assembly rn5) as Base Genome 
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B 
 
                        MIR137HG: Query cover = 48%, identity = 88% 

 

                          
        AK311400: Query cover = 50%, identity = 88% 

 

             
            AK309618: Query cover = 78%, identity = 92% 

 

 
 

C 

Pre-miR-137: 99.1% sequence homology 

098511727 GGTCCTCTGACTCTCTTCGGTGACGGGTATTCTTGGGTGGATAATACGGA 098511678 Human 
>>>>>>>>> || ||||||||||||||||||||||||||||||||||||||||||||||| >>>>>>>>> 
239707763 GGCCCTCTGACTCTCTTCGGTGACGGGTATTCTTGGGTGGATAATACGGA 239707812 Rat 
 
098511677 TTACGTTGTTATTGCTTAAGAATACGCGTAGTCGAGGAGAGTACCAGCGG 098511628 Human 
>>>>>>>>> |||||||||||||||||||||||||||||||||||||||||||||||||| >>>>>>>>> 
239707813 TTACGTTGTTATTGCTTAAGAATACGCGTAGTCGAGGAGAGTACCAGCGG 239707862 Rat 
 
098511627 CA 098511626 Human 
>>>>>>>>> || >>>>>>>>> 
239707863 CA 239707864 Rat 
 
   

Pre-miR-2682: 89.0% sequence homology 

098510907 ACCTTCCTGAAAGAGGTTGGGGCAGGCAGTGACTGTTCAGACGTCCAATC 098510858 Human 
>>>>>>>>> ||||| |||||||||| |||||||||||||||||||||||| ||||| |  >>>>>>>>> 
239708653 ACCTTTCTGAAAGAGGCTGGGGCAGGCAGTGACTGTTCAGATGTCCAGTT 239708702 Rat 
 
098510857 TCTTTGGGACGCCTCTTCAGCGCTGTCTTCCCTGCCTCTGCCTTTAGGAC 098510808 Human 
>>>>>>>>> |||||||||| | ||| |||||||| ||||||| ||||||||||| |||  >>>>>>>>> 
239708703 TCTTTGGGACACTTCTCCAGCGCTGCCTTCCCTACCTCTGCCTTTGGGAT 239708752 Rat 
 
098510807 GAGTCTCAA 098510799 Human 
>>>>>>>>> ||||||||| >>>>>>>>> 
239708753 GAGTCTCAA 239708761 Rat 
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Figure 6.3. Expression and sequence homology of MIR137 transcripts in rat brain. A, Top, 

schematic representation of the rat MIR137 gene locus (rat genome, Assembly rn5) aligned to 

human MIR137HG (human genome, Assembly hg19). Human MIR137 transcripts are 

represented in blue and rat alignments from BLAT searches in black; boxes denote exonic 

regions and connecting lines introns. Regions of sequence that do not match between the human 

and rat genomes are marked red. Rat expressed sequence tags (ESTs) are represented as black 

boxes. Bottom, zoomed in region of top boxed panel showing rat-specific PCR primers targeting 

human MIR137 transcripts. Image generated using the UCSC Genome Browser (https://genome. 

ucsc.edu/). B, Alignment of human MIR137HG, AK311400 and AK309618 mRNA sequences 

(Assembly hg19), depicted as red horizontal bars, with the rat genome (Annotation release 105) 

using the BLAST Assembled Genomes function, NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi), to 

determine sequence homology. Numbers refer to base sequence. Sequence alignments are 

depicted in the top panel of A under Your Sequence from Blat Search. C, Alignments of human 

and rat precursor (pre)-miR-137 and -2682 sequences taken from the reference genomes 

(Assembly hg19 and rn5). Red font indicates sequence variation, grey highlighted sequence 

represents the mature miRNA sequences. D, PCR analysis of MIR137 transcripts outlined in A 

using cDNA from rat brain tissue. Expected PCR product sizes were 291 bp, 232 bp, 409 bp and 

187 bp for AK094607, AK311400, AK309618 and MIR2682, respectively. *Marks the expected 

size of the AK311400 and AK309618 mRNAs. MIR137HG is conserved in rat, validated by 

sequencing. No PCR products were observed for AK311400 and AK309618 under the conditions 

tested. Amplification of the predicted size PCR product (187 bp) for primers spanning rat 

MIR137 and MIR2682 (predicted from alignment with the human genome) and an additional 

higher band, which does not account for the genomic size targeted by the primer set (977 bp), 

could suggest the presence of rat-specific transcripts. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi�
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et al., 2014), see Figure 6.3A. However, a PCR product of the expected size of 

187 bp, given the presence of MIR2682, was observed following amplification 

with a primer set spanning both the MIR137 and MIR2682 genes, which is 

currently being sequenced. An additional larger band running below the 400 bp 

mark was  also  observed  that  was  not accounted  for  by the expected 

genomic size (977 bp) targeted by the primer set in the event of genomic DNA 

carryover during the RNA extraction, Figure 6.3D. Absence of AK311400 and 

AK309618 expression in the rodent brain but amplification of distinct messages 

within the same region could suggest the presence of tissue- or rat-specific 

transcripts originating from the Imir137 promoter.  

Comparative sequence analysis from sequencing data showed that the 

Imir137 promoter VNTR and the transcription start sites for AK311400 and 

AK309618 are highly conserved between the human and rat genomes (92.2% 

homology), Figure 6.4A. Due to its conservation across species, we predicted 

that the rat Imir137 promoter sequence would, like the human Imir137 

promoter, function in initiating gene transcription and that variation between 

the human and rat sequences might alter the regulatory potential of the 

promoter as previously demonstrated for a repeat within the third intron of the 

SLC6A4 gene encoding the serotonin transporter in old world monkeys 

(Paredes et al., 2012). To address both promoter function and the regulatory 

effect of sequence variation within the rat Imir137 promoter relative to the 

human sequence, genomic DNA extracted from the rat cortex was amplified 

using human-specific primers targeting this putative regulatory domain and 

cloned in the forward and reverse orientations in the pGL3-Basic (pGL3B) 

luciferase vector which lacks promoter and enhancer elements. The MIR137 
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VNTR is also conserved, Figure 6.4B-C. Sequencing analysis revealed the 

presence of just less than a 3.5 copy repeat in the samples tested. We could not 

determine whether this domain was polymorphic or not in the rat as the same 

strain of rat was used for genotype analysis and therefore all the animals will 

have been inbred. Analysis of reporter gene activity was performed in human 

SH-SY5Y cells as we have previously demonstrated that the human Imir137(4) 

promoter, which shares 92.2% sequence homology with the rat Imir137 

domain (Figure 6.4A), is transcriptionally active in this cell line (Warburton et 

al., 2014). The human Imir137(4) construct was included as a positive control 

for the reporter gene assay. The rat Imir137 construct in the forwards 

orientation clearly demonstrated its ability to drive reporter gene expression, 

supporting a 16.90 average fold increase in luciferase activity over the pGL3B 

control (Figure 6.4D; ***p<0.001).  Typical  of  a  promoter  element,  the  

reverse  orientation  of  this  domain had no activity (Figure 6.4D). A 1.6-fold 

increase (##P<0.01) in reporter gene expression was supported by the human 

Imir137 promoter construct over the rat construct, Figure 6.4D. This may 

reflect sequence or copy number variation of the MIR137 VNTR (Figure 6.4B), 

the latter of which has previously been demonstrated between different human 

alleles (4- versus 12-copy) in SH-SY5Y (Warburton et al., 2014). Alternatively it 

may reflect sequence variation in the 5’ flanking sequence of the VNTR, Figure 

6.4A, as demonstrated with the rs2660304 SNP in the human Imir137 

promoter sequence outlined in Chapter 4. 
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A 

MIR137 internal promoter VNTR (Imir137) 
Sequence homology: 92.2 % 

098512080 CACCAGGTAAACTGAAGGTTACT.....TGTCACTCCCACTTGTGCCCAA 098512036 Human 
>>>>>>>>> |||||||||||||||||||||||     | ||||||||         ||| >>>>>>>>> 
239707415 CACCAGGTAAACTGAAGGTTACTACTTATATCACTCCC.........CAA 239707455 Rat 
 
098512035 AAAGCCTTGCCACATCTTCCCTCCTCACTGGAAAG.....ACAGCACTCT 098511991 Human 
>>>>>>>>> | | ||||| ||| |   | || ||    ||||||     ||    || | >>>>>>>>> 
239707456 AGATCCTTGGCACCTAGGCTCTGCTTGGCGGAAAGAAAGCACTTGCCTGT 239707505 Rat 
                                                   AK311400 

098511990 TCTGTGTTAAGTATTTGATTTTGTGATTTGTCTTTCAGAATTGGAAATAG 098511941 Human 
>>>>>>>>> | ||||||||||   || || ||||||||||||||||||||||||||||| >>>>>>>>> 
239707506 TGTGTGTTAAGTGGCTGGTTCTGTGATTTGTCTTTCAGAATTGGAAATAG 239707555 Rat 
 
098511940 AGCGGCCATTTGGA...TTTGGGCAGGAAGCAGCCGAGCACAGCTTTGGA 098511894 Human 
>>>>>>>>> | | ||||||||||   | ||||||||||||| | ||||||||||||||||>>>>>>>>> 
239707556 AACAGCCATTTGGAAGATCTGGGCAGGAAGCAACAGAGCACAGCTTTGGA 239707605 Rat 
 
098511893 TCCTTCTTTAGGGAAATCGAGTTATGGATTTATGGTCCCGGTCAAGCTCA 098511844 Human 
>>>>>>>>>  ||||||||||||||||||||||||||||||||||||||||||||||||| >>>>>>>>> 
239707606 GCCTTCTTTAGGGAAATCGAGTTATGGATTTATGGTCCCGGTCAAGCTCA 239707655 Rat 
 
098511843 GCCCATCCCCAGGCAGGGGCGGGCTCAGCGAGCAGCAAGAGTTC....TG 098511798 Human 
>>>>>>>>> ||||| ||| || |||||||||||||  |  |||||||||||||    || >>>>>>>>> 
239707656 GCCCAGCCCTAGCCAGGGGCGGGCTC..C..GCAGCAAGAGTTCTTTCTG 239707701 Rat 
                                 AK309618 

098511797 GTGGCGGCGGCGGCGGCAGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGT 098511748 Human 
>>>>>>>>> |||| ||||||||| || | ||||| | |||||||||||| |||||     >>>>>>>>> 
239707702 GTGGTGGCGGCGGCAGCGGCAGCAGTGACAGCGGTAGCAGAGGCAGA... 239707748 Rat 
 
098511747 AGCAGCGGCAGCGGCAGCTTGGTCCTCTGACTCTCTTCGGTGACGGGTAT 098511698 Human 
>>>>>>>>>       |||||||||||||||||||||||||||||||||||||||||||| >>>>>>>>> 
239707749 ......GGCAGCGGCAGCTTGGCCCTCTGACTCTCTTCGGTGACGGGTAT 239707792 Rat 
 
098511697 TCTTGGGTG 098511689 Human 
>>>>>>>>> ||||||||| >>>>>>>>> 
239707793 TCTTGGGTG 239707801 Rat  
 
 
B  

Human (hg19) Rat (rn5) 

Sequence 1 Sequence 1 
CGGCGGCGGCGGCAG TGGCGGCGGCAGCGG 

TAGCAGCGGCAGCGG CAGCAGTGACAGCGG 

TAGCAGCGGCAGCGG TAGCAGAGGCAGAGG 

TAGCAGCGGCAGCGG .........CAGCGG 

Sequence 2 Sequence 2 
CGGCGGCGGCAGTAG CGGCGGCAGCGGCAG 

CAGCGGCAGCGGTAG CAGTGACAGCGGTAG 

CAGCGGCAGCGGTAG CAGAGGCAGA..... 

CAGCGGCAGCGGCAG ....GGCAGCGGCAG 

Sequence 3 Sequence 3 
CGGCAGTAGCAGCGG CAGCGGCAGCAGTGA 

CAGCGGTAGCAGCGG CAGCGGTAGCAGAGG 

CAGCGGTAGCAGCGG CAGAGG......... 

CAGCGGCAGC..... CAGCGGCAGC..... 
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Figure 6.4. Evolutionary conservation of the internal MIR137 promoter (Imir137). A, 

Alignment of sequencing data for the rat Imir137 promoter domain with the corresponding 

human sequence. Identical bases are marked with a connecting horizontal line and sequence 

variation with red font. Single and double underlined sequence corresponds to the MIR137 

VNTR and precursor-miR137, respectively. Arrows mark the transcription start sites for the 

AK311400 and AK309618 mRNAs that originate from this region in the human genome. NRSF 

binding sites predicted from rVista (TRANSFAC IDs: V$NRSF_Q4 aligns to hg19 Chr1: 98511764-

98511782 and V$NRSF_01 aligns to rn5 Chr2: 239707716-239707736) and ENCODE ChIP-seq 

data are highlighted in grey (http://rvista.dcode.org/). B, Alignment of the MIR137 VNTR in 

human and rat. Underlined sequence represents the different starting positions of the 

realignments labelled sequence 1, 2 and 3. Red font indicates base pair changes between human 

and rats. C, Amplification of the Imir137 promoter in rat genomic DNA showed that this 

conserved tandem repeat domain was not polymorphic in the rat samples tested (n=1 as same 

strain rat). D, Average fold change in luciferase activity supported by the human and rat Imir137 

reporter gene constructs over vector controls in SH-SY5Y cells. N=4. * Significant changes in 

luciferase activity over backbone control, # and between constructs. (##P<0.01, ***P<0.001). 

http://rvista.dcode.org/�
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6.3.2 NRSF differentially modulates the rat Imir137 promoter in an in 

vivo model of CSD 

We have previously demonstrated that NRSF can function as a 

transcriptional regulator of the human Imir137 promoter in human SH-SY5Y 

neuroblastoma cells both exogenously, as shown by analysis of reporter gene 

activity and MIR137 mRNA expression profiling following NRSF over-

expression, and  endogenously, as demonstrated through ChIP assays of NRSF 

occupancy in response to cocaine challenge (Warburton et al., 2014). In order to 

investigate conservation of NRSF binding sites within the rat Imir137 promoter, 

sequencing data from rat genomic DNA was subjected to in silico analysis using 

the publicly available software rVista 2.0 (http://rvista. dcode.org/); an online 

resource for predicting conservation of regulatory domains based on 

comparative genomics of transcription factor binding sites and ECRs (Loots and 

Ovcharenko, 2004). NRSF consensus binding sequences over the MIR137 gene 

locus were shown to be conserved between human and rat based on the 

TRANSFAC 4.0 database (Matys, 2003), under default parameters (see Methods 

section 2.2.6.1), Figure 6.4A. To validate NRSF binding over the region in the rat 

brain, ChIP was performed using chromatin samples extracted from the rat 

cortex (see Methods section 2.2.8.2). In the normal rat brain NRSF binding was 

observed over the Imir137 promoter but not at the MIR137HG promoter, 

Figure 6.5A. This is comparable to NRSF binding patterns in human SH-SY5Y 

cells, in which NRSF occupancy was observed over Imir137 but not at a second 

predicted NRSF binding site within the first intron of MIR137HG (Warburton et 

al., 2014). NRSF binding of the Imir137 promoter was reduced or lost 24 hours 

post-CSD induction (Figure 6.5B). This correlated with a 1.36-fold decrease 
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(*P<0.05; SD, 0.25) in NRSF mRNA expression using primers which recognise all 

isoforms of NRSF in the ipsilateral hemisphere in which CSD was elicited 

relative to the contralateral control hemisphere and a 14.59-fold increase 

(**P<0.01; SD, 2.43) in MIR137HG mRNA expression determined by RT-

PCR/qPCR analysis (Figure 6.5C-D). In line with previous work in the lab 

addressing NRSF regulation in a rodent model of kainic acid-induced epilepsy 

(Spencer et al., 2006), REST4 mRNA expression was induced in the ipsilateral 

hemisphere following CSD determined by RT-PCR (Figure 6.4C), supporting its 

proposed role in disease processes. RT-qPCR data for REST4 expression was 

discarded due to the presence of multiple amplicons determined by the melt-

curve. A higher PCR product using the REST4 primer set was also detected by 

RT-PCR in two of the three CSD samples (Figure 6.4C). This may reflect one of 

several novel splice variants recently identified as encoding from the region in 

different human and mouse tissues (Chen and Miller, 2013), and warrants 

further investigation due to the reported differences in alternative splicing of 

the NRSF gene between different tumour subtypes or pathological and matched 

control tissues (Coulson et al., 2000, Wagoner et al., 2010, Chen and Miller, 

2013).  

EZH2  and MeCP2  binding over the Imir137 promoter in response to 

CSD was also addressed in this model  due  to 1)  their  interaction  with  the  

NRSF-signalling  complex  in  modulating neuronal gene expression (Dietrich et 

al., 2012, Noh et al., 2012), 2) potential EZH2 binding of this domain identified 

from ENCODE transcription factor ChIP-seq data in human cell lines (March 

2012 release, see Figure 6.5A) and 3) MeCP2-mediated regulation of miR-137 

expression in adult neural stem cells (aNSCs) in a mouse model of adult 
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neurogenesis (Szulwach et al., 2010). Little or no signal was observed for EZH2 

and MeCP2 binding of the MIR137HG promoter in rat cortical samples under all 

conditions tested (Figure 6.5B). A CpG island (CGI) located 3.75 Kb upstream of 

the MIR137HG transcription start site shown to bind both NRSF and EZH2 from 

human ENCODE ChIP-seq data (Figure 6.5A), and more likely to be enriched for 

the methyl CpG binding protein MeCP2, may be a more appropriate region for 

analysis of transcription factor binding over the MIR137HG promoter region. 

Analysis of factors binding over the MIR137HG CGI is currently being addressed 

using the same in vivo ChIP samples for comparison with the MIR137HG and 

Imir137 promoter regions, the latter of which is also encompassed by a CGI. 

Both EZH2 and MeCP2 were shown to bind the Imir137; however binding was 

unaffected at 24 hours post-CSD induction (Figure 6.5B). 
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Figure 6.5. NRSF binding over the internal MIR137 promoter VNTR is reduced following 

induction of cortical spreading depression (CSD). Chromatin and total RNA was extracted 

from the left and right cortical hemispheres of adult male Sprague Dawley rats (n=3) 24 hours 

following perfusion of KCl into the right hemisphere to induce CSD. The left hemisphere was 

used as an internal control as CSD does not generally cross the midline. Primers spanning the 

MIR137HG and internal MIR137 (Imir137) promoters are illustrated in A. ChIP was performed 

in normal (A) and CSD (B) tissue samples using antibodies against histone H3 (positive control 

for ChIP), EZH2, MeCP2, the C-terminal of NRSF (C-NRSF) which targets the full-length protein 

and the N-terminal of NRSF which targets all variants of NRSF including REST4 (rodent 

equivalent of sNRSF). Predicted transcription factor binding for NRSF and EZH2 over the 

MIR137 locus from human ENCODE ChIP-seq data (March 2012 release) is illustrated in A. C-D, 

Gene expression profiling of rat NRSF, REST4 (expected size PCR product marked with arrow) 

and MIR137HG in the left (control) and right (CSD) cortex following CSD. Calcitonin (calca-CT) 

and calcitonin gene-related peptide (calca-CGRP) were included as a positive control for gene 

expression changes in response to CSD. D, RT-qPCR data is presented as log2 fold change in 

expression in CSD samples over the controls, normalised to ACTB and is representative of 3 

biological replicates, each analysed in triplicate. Abbreviation: IP; immunoprecipitation.  
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6.3.3 Modulation of NRSF and MIR137 target genes 24 hours post-CSD 

induction 

Both NRSF and MIR137HG mRNA expression levels were shown to be 

modulated in response to CSD in rat cortical tissue (Figure 6.5C-D). To 

investigate the potential downstream effects of these changes, gene expression 

profiling of known or putative targets of these two transcriptional regulators 

was addressed in our CSD model. The putative NRSF target genes FOS (FBJ 

murine osteosarcoma viral oncogene homolog), GAD1 (glutamate 

decarboxylase 1), JUN (Jun oncogene) and RELN (Reelin) were selected for RT-

PCR analysis based on data presented in Chapter 5 of this thesis which showed 

these genes to contain a predicted NRSF binding site within their promoters 

and to be modulated in response to sodium valproate (Warburton et al., 2015); 

an anticonvulsant drug used in the treatment of migraine and shown to 

suppress CSD frequency in vivo (Ayata et al., 2006). Furthermore, aside from 

their role in neuropsychiatric disease (see Chapter 5), all of these genes have 

been previously implicated in CSD or conditions associated with CSD, including 

epileptogenesis, migraine and/or ischemia (Urbach et al., 2006, Qureshi and 

Mehler, 2010, Won et al., 2006, Darrah et al., 2013, Rangel et al., 2001). The 

miR-137 target genes CACNA1C (calcium channel, voltage-dependent, L type, 

alpha 1C subunit) and TCF4 (transcription factor 4) were also addressed due to 

their respective clinical associations with Timothy syndrome and Pitt-Hopkins 

syndrome, both of which are neurological conditions characterised by mental 

retardation and susceptibility to seizures (Rosenfeld et al., 2009, Splawski et al., 

2004). RT-PCR analysis of cortical samples from CSD and control hemispheres 

at 24-hours post-CSD did not shown any significant differences in mRNA 



 

283 
 

expression for all genes tested, Figure 6.6. This may reflect the time-course 

used in this experiment, particularly with respect to the early-response genes c-

Fos and c-Jun. A previous in vivo study of CSD reported significant up-regulation 

of c-Fos mRNA in the rat cortex following a 30 minute and 2 hour recovery 

period after eliciting the same number of CSD episodes (n=5) as those used in 

this experiment, with normal levels of expression returning at 24 hours post-

CSD (Rangel et al., 2001). The same authors also reported a similar pattern of 

expression for BDNF mRNA, whilst another study showed that BDNF protein 

levels remained significantly elevated at 24 hours following CSD (Kawahara et 

al., 1997). Normalisation of the transcriptome to baseline levels at 24 hours 

post-CSD is consistent with the transient nature of this neurological insult. This 

is consistent with data for the NRSF target gene TAC1 in a rat model of epilepsy 

in which hippocampal mRNA levels of this proconvulsant neuropeptide were 

significantly up-regulated at 3 hours post-kainic acid treatment but returned to 

basal levels at the 24 hour time point (Spencer et al., 2006). Although RT-PCR 

analysis of NRSF and MIR137 target genes did not show any significant changes 

in mRNA levels between control and CSD samples, it does provide a negative 

control for gene expression changes in response to this neuronal insult and 

provides support that the observed modulation of the NRSF and MIR137 genes 

was a specific response to CSD rather than an experimental artefact. The effects 

of CSD on cortical mRNA and protein levels of several NRSF and miR-137 target 

genes at different recovery periods and in response to drugs targeting CSD, such 

as NMDA receptor antagonists (Wang et al., 2012), are currently being 

addressed by our collaborators at XJTLU. 
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Figure 6.6. Gene expression profiling of NRSF and MIR137 gene targets 24-hours post-

CSD (cortical spreading depression) induction. RT-PCR analysis of putative NRSF and known 

MIR137 target genes in rat cortex following CSD. CSD samples (n=3) represent the ipsilateral 

cortical hemisphere in which CSD was induced; control samples (n=3) represent the 

contralateral hemisphere. No significant changes in mRNA expression were observed between 

the control and CSD samples at 24 hours post-induction. Abbreviations: CACNA1C, calcium 

channel, voltage-dependent, L type, alpha 1C subunit; FOS, FBJ murine osteosarcoma viral 

oncogene homolog; GAD1, Glutamate decarboxylase 1; JUN, Jun oncogene; RELN, Reelin; 

TCF4,transcription factor 4 .     



 

285 
 

6.4 Discussion 

The MIR137 gene and the miRNA which it encodes, miR-137, have been 

widely implicated in several disease processes ranging from CNS dysfunction to 

cancer. Recent genome-wide association studies (GWAS) have identified the 

MIR137 gene locus as one of the strongest and most reproducible genetic 

correlates in predicting risk for schizophrenia (Ripke et al., 2013, The 

Schizophrenia Psychiatric GWAS Consortium, 2011), making it an attractive 

candidate for studying genetic perturbations in animal models of psychiatric 

disease. Although miR-137 is highly conserved across species, the non-coding 

RNA transcripts from which it is encoded are not very well characterised and 

are not annotated in the rat reference genome (Assembly rn5/6). We have 

previously shown plasticity over the human locus in response to 

psychostimulant drug treatment and NRSF/sNRSF over-expression (Warburton 

et al., 2014). Differential expression of these MIR137 host genes may be one 

mechanism by which the levels of miR-137 and a second miRNA, miR-2682, also 

expressed from the locus (Duan et al., 2014), can be differentially regulated in a 

tissue-specific or stimulus-inducible manner which may be an important and 

novel mechanism in neuropsychiatric disease. The purpose of this study was to 

firstly investigate the evolutionary conservation of the NRSF-MIR137 pathway, 

which we hypothesis to be one important mechanism involved in modulating 

miR-137 expression levels and thus its downstream target genes in the 

aetiology of schizophrenia, and secondly extend the potential role of this 

regulatory network to other neurological conditions by assessment of NRSF-

mediated regulation of the MIR137 gene locus in an in vivo model of CSD, a 

neuronal insult which has been closely associated with the pathophysiology of 
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migraine, epilepsy and ischemia; conditions which have previously implicated a 

role for both NRSF and miR-137 which will be discussed. 

Evolutionary divergence in the expression patterns of miRNAs may play 

an important role in shaping species-specific neuronal gene expression profiles 

and may contribute to the evolution of human-specific cognitive functions. A 

recent study which profiled miRNA expression in the prefrontal cortex and 

cerebellum of human, chimpanzee and macaque brains showed that miRNAs 

which displayed human-specific expression localised in neurons and targeted 

genes that were enriched in neuronal functions implicated in memory and 

learning such as axon guidance and long-term potentiation (Hu et al., 2011a). 

These differences in expression may reflect the role of species-specific 

regulatory elements such as promoters and enhancers within gene regulatory 

sequences which can influence when, where and how much of a gene is 

expressed within a cell dependent in part upon the cellular complement of 

transcription factors available. Genetic variation embedded within such 

regulatory domains can further influence the transcriptional machinery through 

altering the binding sites of transcription factors or epigenetic regulators. 

Support for sequence variation in modifying gene expression in different 

species comes from our lab’s previous work on the SLC6A4 intron 3 tandem 

repeat in old world monkeys which showed significant differences in reporter 

gene activity supported by repeats cloned from Mandrillus sphinx and 

Cercopithecus aethiops, which differed at point-base substitutions (Paredes et 

al., 2012). This study also demonstrated a role for repetitive DNA in regulating 

tissue-specific gene expression as reporter gene activity was higher in rat 

primary cortical neurons than in human choriocarcinoma JAr cells (Paredes et 
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al., 2012). Changes in gene expression along the human evolutionary lineage 

may also play an important role in disease processes. This is exemplified by our 

lab’s work on hominid-specific subtypes of SVA (SINE-VNTR-Alu) 

retrotransposon insertions that contain distinct regulatory elements, including 

a VNTR domain, which can potentiate differential gene expression of candidate 

genes implicated in neurodegeneration and cancer, such as FUS (Fused in 

sarcoma) and PARK7 (Savage et al., 2013, Savage et al., 2014). Identifying the 

transcriptional mechanisms that control human-specific expression of genes 

that are highly conserved across species may point to important regulatory 

networks involved in the evolution of higher cognitive processes and 

behaviours; pathways which are likely to be those disrupted in CNS 

dysfunction. With this mind, transcriptional regulation of the MIR137 gene 

locus was addressed in the rat genome to determine evolutionary conservation 

of the identified Imir137 promoter VNTR, discussed in Chapter 4 of this thesis, 

which we have shown to direct allele-specific and stimulus-inducible reporter 

gene expression in human SH-SY5Y neuroblastoma cells. MIR137 host 

transcripts originating from this regulatory domain, which were differentially 

regulated by both NRSF over-expression and cocaine in our human cell line 

model (Warburton et al., 2014), were also addressed in this study using an in 

vivo model of CSD as neural plasticity of miR-137 and its gene targets have 

previously been reported in several animal models and/or clinical studies of 

neurological disease including schizophrenia, Alzheimer’s disease, stroke and 

epilepsy (Geekiyanage and Chan, 2011, Song et al., 2011, Kim et al., 2012, Guella 

et al., 2013, Kwon et al., 2013, Jeyaseelan et al., 2008, Zhao et al., 2013).  
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Analysis of MIR137 host gene mRNA expression in the rat brain showed 

conservation of MIR137HG based on RT-PCR using primers targeting exons 3 

and 4 of this transcript, which are situated proximal to and overlap with the 

Imir137 promoter sequence. Expression of the AK311400 and AK309618 

transcripts which originate from the Imir137 promoter was not observed in the 

rat brain under the conditions tested. However a nested primer set targeting rat 

MIR137 and the predicted location of MIR2682 based on the human sequence 

amplified a message of the correct size when accounting for the presence of 

MIR2682. Given the expression of MIR137 transcripts spanning the region of 

the Imir137 promoter in the rat brain, and differential reporter gene expression 

directed by specific alleles of the Imir137 promoter VNTR in driving reporter 

gene expression in human neuroblastoma cells in response to different stimuli 

(Warburton et al., 2014), we sought to investigate whether the Imir137 

promoter sequence was conserved between human and rats, if it was 

polymorphic in nature and whether it functioned as a promoter. Sequencing of 

rat genomic DNA showed that this domain was highly conserved (92.2% 

sequence homology) and contained a 3.5-copy repeat of the MIR137 VNTR, 

however we could not determine whether or not this region was polymorphic 

in the samples tested as the same strain of rat was used and therefore all 

animals were genetically similar due to inbreeding. Genotype analysis of the 

MIR137 VNTR in human samples showed that the allele frequency of the 

common 4-copy variant is approximately 70%, with homozygotes for this allele 

observed in almost 50% of the study cohort (see Chapter 4, Table 4.1 and 4.2). 

In order to determine whether this domain is polymorphic in rats, a minimum 

of ten different strains of rat would be expected to be needed for genotype 
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analysis in order to observe one of the alternative copy-number variants. The 

ability of the rat Imir137 putative promoter domain to drive reporter gene 

expression was also addressed. In human SH-SY5Y neuroblastoma cells, a cell 

line chosen due to it routinely supporting strong promoter activity of the 

human Imir137 promoter construct, the rat Imir137 promoter sequence clearly 

demonstrated its ability to function as a promoter. Evolutionary conservation of 

this internal promoter supports its role as a key transcriptional mechanism in 

governing the expression of miR-137, with variability in the number of copy 

repeats of this domain observed in human subjects potentially operating as a 

region for human-specific adaptations to environmental influences. Such a 

mechanism has been proposed for polymorphisms within the SLC6A4 gene 

which is strongly implicated in the regulation of primate-specific social 

behaviours (Paredes et al., 2012).  

To determine whether NRSF-mediated regulation of the Imir137 

promoter in response to neuronal stimulation is a conserved transcriptional 

mechanism in the rat brain and across different models of neurological 

dysfunction, the NRSF-MIR137 pathway was explored using an in vivo model of 

CSD. CSD is a neurological insult characterised by a dramatic imbalance in ion 

homeostasis in the brain, neurotransmission, increased metabolism and 

changes in cerebral blood flow, which has been identified from both clinical and 

animal-based studies as a potential pathophysiological mechanism in migraine, 

stroke, subarachnoid haemorrhage and traumatic brain injury (Lauritzen et al., 

2011). CSD is preceded by propagating oscillations which indicate a transient 

state of hyperexcitability associated with localised epileptiform discharges 

(Herreras et al., 1994), which may explain the co-occurrence of CSD and seizure 
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following brain trauma (Fabricius et al., 2008). We proposed a novel role for 

NRSF in the pathophysiology of CSD due to its association with epileptogenesis 

and other neuronal insults which promote epilepsy and CSD, such as ischemia 

(Calderone et al., 2003, Noh et al., 2012, Palm et al., 1998, Spencer et al., 2006, 

McClelland et al., 2014, McClelland et al., 2011). In rodent models of epilepsy, 

hippocampal NRSF and REST4 levels are significantly up-regulated which 

correlates with modulation of a subset of NRSF target genes encoding for ion 

channels, glutamate receptor subunits and other key factors implicated in 

neuronal function (McClelland et al., 2011, Palm et al., 1998, Spencer et al., 

2006, McClelland et al., 2014). Several of these epilepsy associated NRSF target 

genes are also implicated in CSD, including the CACNA1A (calcium channel, 

voltage-dependent, P/Q type, alpha 1A subunit) gene which is clinically 

associated with familial hemiplegic migraine (FHM); an autosomal dominant 

subtype of migraine with aura which is caused by missense mutations in the 

CACNA1A gene in >50% of cases, and migraine with induced susceptibility to 

CSD as demonstrated from a knockin mouse model of FHM (Joutel et al., 1993, 

Ophoff et al., 1994, van den Maagdenberg et al., 2004, Johnson et al., 2006). 

Furthermore, a recent in vivo model of global ischemia implicated the NRSF-

silencing complex in targeting several genes implicated in neuronal 

transmission and CSD preconditioning, including GRIA2  which encodes for the 

AMPA-receptor GluR2 (glutamate receptor 2) subunit, which is also a target of 

miR-137 (Noh et al., 2012, Chazot et al., 2002, Strazisar et al., 2014). Consistent 

with a model of NRSF-mediated regulation of MIR137 in response neuronal 

stimulation (Warburton et al., 2014), at 24-hours post CSD induction down-

regulation of NRSF mRNA expression and reduced NRSF binding of the Imir137 
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promoter was observed which correlated with up-regulation of MIR137HG. In 

rodent models of stroke, the levels of miR-137 have been shown to be 

significantly down-regulated in the brain and peripheral blood of rats subjected 

to cerebral ischemia relative to control subjects (Jeyaseelan et al., 2008, Zhao et 

al., 2013). Reduced levels of miR-137 in rat brain tissue in a model of post-

stroke depression correlated with increased GRIN2A (Zhao et al., 2013), a 

NMDA-receptor subunit that has previously been implicated in depression and 

genetic association studies of epilepsy-aphasia spectrum disorders (Carvill et 

al., 2013, Lemke et al., 2013). The depressive behavioural effects associated 

with increased levels of GRIN2A in the post-stroke depression model were 

alleviated by injection of a miR-137 mimic, suggesting an anti-depressant-like 

and neuroprotective role for this miRNA (Zhao et al., 2013).  

Previous studies have provided evidence to suggest that CSD may play a 

neuroprotective role in the brain. For example, preconditioning rodent brains 

with CSD has been shown to provide tolerance against subsequent ischemic 

insults; reducing the size of infarct lesion development following focal cerebral 

ischemia and increasing neurogenesis in the subventricular zone (Yanamoto et 

al., 2004, Yanamoto et al., 2005). The mechanisms governing tolerance to 

subsequent episodes of ischemia induced by CSD are not clear and may reflect 

up-regulation of genes implicated in neuroprotection, such as BDNF and c-Fos 

(Kariko et al., 1998, Kawahara et al., 1997, Rangel et al., 2001, Kim et al., 2013); 

both of which have been identified as known or potential NRSF target genes 

(Palm et al., 1998, Warburton et al., 2015). We did not see significant up-

regulation of the immediate-early response genes c-Fos and c-Jun in our CSD 

model, which may reflect the time course used as a previous study reported that 
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c-Fos mRNA expression levels in response to CSD induction returned to basal 

levels following 24 hours recovery (Rangel et al., 2001). Up-regulation of the 

MIR137 transcript in our CSD model at 24 hours recovery, a period 

corresponding to the initial window of time in which increased tolerance can be 

induced by various preconditioning methods (Chazot et al., 2002), may however 

confer an adaptive neuroprotective effect through down-regulation of genes 

implicated in ischemia, providing ischemic tolerance against subsequent insults. 

Support for this comes from a study of CSD preconditioning in the rodent brain 

in which a 30% reduction in the immunoreactive form of the pro-ischemic 

GluR2 protein, which is encoded by the miR-137 target gene GRIA2 (Strazisar et 

al., 2014), was observed in the preconditioned brain relative to control animals 

(Chazot et al., 2002). The role of miR-137 in CSD preconditioning is being 

addressed through ongoing collaborations with XJTLU. Preliminary work by the 

group has shown that mRNA expression of the miR-137 target gene GRIN2A, 

previously up-regulated in animal models of ischemia (Zhao et al., 2013), is 

down-regulated at 24 hours post CSD relative to controls (see Appendix 1, 

Figure A1.2) which corresponds with up-regulation of MIR137HG, supporting 

our hypothesis of a neuroprotective role for miR-137 in CSD preconditioning. 

NRSF has also been implicated in neuroprotection in animal models of 

kindling (Spencer et al., 2006, Garriga-Canut et al., 2006, Hu et al., 2011b); a 

model in which repeated focal application of initially sub-convulsive electrical 

stimulation results in seizure. An example of the neuroprotective role of NRSF 

in epilepsy comes from studies investigating the anticonvulsant properties of 

the low carbohydrate ketogenic diet used in the treatment of drug-resistant 

temporal lobe epilepsy and to target CSD in vivo (de Almeida Rabello Oliveira et 
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al., 2008), in which the glycolytic inhibitor 2-deoxy-D-glucose (2DG) reduces 

epilepsy progression through blocking seizure-induced up-regulation of BDNF 

expression and its receptor, TrkB, through NRSF–dependent epigenetic 

mechanisms (Garriga-Canut et al., 2006). An indirect neuroprotective role for 

NRSF in CSD preconditioning can be implied from its down-regulation at 24 

hours post-CSD induction and its dissociation from the Imir137 promoter which 

correlated with up-regulation of MIR137HG mRNA expression. In support of the 

differential expression and function of the NRSF isoforms in animal and cell line 

models of epilepsy and clinical studies of breast and lung cancer, REST4 mRNA 

expression was induced in response to CSD (Spencer et al., 2006, Gillies et al., 

2009, Wagoner et al., 2010, Coulson et al., 2000, Palm et al., 1998, Chen and 

Miller, 2013). A dual role for this transcriptional regulator in both pathogenesis 

and neuroprotection may reflect differences in the cellular levels or 

compartmentalisation of the different NRSF isoforms (Spencer et al., 2006, 

Zuccato et al., 2003).  

In vivo models of CSD have shown increased densities of mitotic cells and 

neurogenesis in the dentate gyrus and subventricular zone and new neuron-like 

cells in the caudate putamen and cortex of the rat brain several days following 

CSD induction (Yanamoto et al., 2005). NRSF is a regulator of adult 

neurogenesis and has been shown to recruit the polycomb repressive 

complexes 1 and 2 (PRC2) in mouse embryonic stem cells (mESCs) which co-

localise with the NRSF-silencing complex at genes involved in neuronal 

development, with displacement of this complex occurring during neuronal 

differentiation (Dietrich et al., 2012). EZH2, a histone H3K27 methyltransferase, 

is a core member of PRC2 and has been shown to co-immunoprecipitate with 
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NRSF in mESCs (Dietrich et al., 2012). A study in aNSCs reported cross-talk 

between the NRSF co-repressor molecule MeCP2, miR-137 and EZH2 (Szulwach 

et al., 2010). MeCP2 was shown to negatively regulate MIR137 transcription, 

with over-expression and down-regulation of miR-137 correlating with aNSC 

proliferation and differentiation, respectively (Szulwach et al., 2010). The levels 

of miR-137 were shown to be inversely correlated with EZH2 which was 

validated as a downstream target of miR-137 in aNSCs, supporting its role in the 

modulation of neuroprogenitor cell identity and differentiation (Shen et al., 

2008, Sher et al., 2008, Ezhkova et al., 2009). ENCODE transcription factor ChIP-

seq data from human cell lines predicts EZH2 binding over the human MIR137 

gene locus (Figure 6.5A), suggesting a double-feedback mechanism in the 

regulation of miR-137 expression levels during neurogenesis. Polycomb 

proteins have been shown to be activated in animal models of ischemic 

tolerance, serving a neuroprotective role through transcriptional repression of 

pro-ischemic genes such as those implicated in ion transport, regulation of 

metabolism and cell-cycle control (Stapels et al., 2010). To test a potential role 

of this extended regulatory network, which implicates several NRSF co-binding 

partners, in the modulation of MIR137 expression in our CSD model, ChIP was 

performed using antibodies against MeCP2 and EZH2. Binding was observed for 

both MeCP2 and EZH2 at the Imir137 promoter across all conditions tested 

with no significant changes at 24 hours post-CSD. This again may reflect the 

timescale used in this experiment and requires further investigation at different 

recovery periods as ChIP and gene expression data can only offer a snapshot of 

the regulatory processes operating in response to neuronal stimulation. It could 

also indicate a potential role for these co-repressors in promoting 



 

295 
 

transcriptionally permissive chromatin environments following CSD. In stem 

cells, polycomb proteins have been shown to function in promoting and 

maintaining bivalent chromatin states which are associated with genes that are 

‘poised’ ready for activation upon stimulation but are maintained at low levels 

by opposing repressive histone modifications (Lee et al., 2006). Furthermore, 

both MeCP2 and EZH2 have been shown to function as transcriptional 

activators. In a MeCP2 knock-down and over-expression mouse model, it was 

demonstrated that the majority of MeCP2 target genes tested (approximately 

85%) were activated by this epigenetic regulator in the hypothalamus 

(Chahrour et al., 2008). Similarly, studies in breast cancer cells have identified a 

number of cancer-associated genes to be activated by EZH2 following knock-

down of this polycomb protein member (Lee et al., 2011). Binding of several 

epigenetic regulators of the NRSF-signalling complex to the MIR137 gene locus 

within the rat cortex is suggestive of a dynamic regulatory feedback mechanism, 

which may play an important role in modulating extensive neuronal networks 

implicated in a range of neuronal processes relevant to normal brain physiology 

and disease. This is supported by the role of all of these factors in both neuronal 

gene activation and repression, autoregulation (suggested from in silico analysis 

of transcription factor binding motifs and ENCODE data for NRSF and EZH2) 

and targeting of other members of the regulatory network such as MeCP2 

regulating NRSF (Abuhatzira et al., 2007) and reciprocal interactions between 

MIR137 and EZH2 (Szulwach et al., 2010).  
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6.5 Summary 

In summary, we have validated the presence and function of the rat 

Imir137 promoter sequence and have demonstrated species-specific 

differences in the transcriptional potential of these regulatory domains based 

on the underlying sequence. Further we have confirmed that NRSF is one factor 

operating at this region but not at a second predicted NRSF binding site at the 

MIR137HG proximal promoter region which is consistent with previous data in 

the human SH-SY5Y neuroblastoma cell line. We have also identified novel 

transcripts encoded from the region encompassing the Imir137 promoter that 

are not currently annotated in the rat reference genome (Assembly rn5/rn6). 

One such transcript that contains the sequence of miR-137 itself was shown to 

be up-regulated in response to CSD at 24 hours; a period reported to 

correspond with the initial window of time in which increased tolerance to 

subsequent neuronal attacks can be induced by various preconditioning 

methods, indicating a potential neuroprotective effect. This correlated with 

down-regulation of full-length NRSF and loss of binding of this factor from the 

Imir137 promoter, and up-regulation of REST4, suggesting a potential role for 

NRSF-mediated regulation of miR-137 in CSD pathophysiology. The findings of 

this study are informative for animal models which aim to address modulation 

of the MIR137 gene locus in human neurological conditions associated with 

dysregulation of this brain-enriched miRNA, for example down-regulation of 

miR-137 in post-mortem and neuroimaging studies of schizophrenic brains.  
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Part II: The NRSF-MIR137 Pathway in Breast Cancer 

6.6 Introduction 

The MIR137 gene is located in the melanoma susceptibility region of 

chromosome 1 (1p22) (Gillanders et al., 2003). In addition to its role in the CNS, 

MIR137 has also been identified as a tumour suppressor gene, with epigenetic 

silencing of miR-137 being implicated in several tumour types including human 

breast cancer (Vrba et al., 2013). The role of miR-137 in breast cancer is 

exemplified through its targeting of oestrogen-related receptor alpha (ERRα), 

an orphan nuclear receptor implicated in breast tumourigenesis, which was 

shown to impair the proliferative and migratory capacity of breast cancer cells 

in vitro (Zhao et al., 2012). This pathway could be a target for therapy as miR-

137 is up-regulated in response to chemotherapy treatment of rectal cancer 

(Svoboda et al., 2008) and has been implicated in sensitising multidrug 

resistance MCF-7 breast cancer cells to chemotherapeutic agents through 

modulation of P-glycoprotein (permeability glycoprotein, P-gp); a drug efflux 

pump encoded by the MDR1 (multidrug resistant gene-1) gene and implicated 

in drug-resistance (Zhu et al., 2013b). More generally, miR-137 modulates 

numerous cell cycle proteins involved in cancer such as c-Met, MITF, CDK6, 

CDC42 and the H3K27 methyltransferase and polycomb member EZH2 (Chen et 

al., 2011b, Liu et al., 2011, Zhu et al., 2013a, Chen et al., 2011c, Bemis et al., 

2008, Luo et al., 2013). Therefore a better understanding of the transcriptional 

regulation of this gene will give us better insight into the early steps in tumour 

progression.  
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As discussed previously, we have validated an internal promoter VNTR 

within the MIR137 gene that is regulated in an allele-specific and stimulus-

inducible manner in human SH-SY5Y neuroblastoma cells (Warburton et al., 

2014). The VNTR has previously been shown to affect the processing efficiency 

of miR-137 in melanoma cell lines, potentially through altering the secondary 

structure of the primary(pri)-miRNA in which it is located as determined by 

computational modelling, suggesting a functional role for this polymorphic 

domain in disease processes (Bemis et al., 2008). In silico analysis of the region 

identified a NRSF binding site within the repeat sequence which we determined 

to be functional through ChIP and NRSF/sNRSF over-exprssion assays, Chapter 

4  (Warburton et al., 2014). The NRSF isoforms supported differential 

regulation over the internal MIR137 promoter which was dependent upon 

VNTR genotype, which may be an important GxE mechanism under pathological 

conditions. 

Differential expression of NRSF and its truncated isoform sNRSF have 

been implicated in tumourigenesis, and can support both oncogenic and 

tumour-suppressive roles dependent upon tumour type (Negrini et al., 2013). In 

subtypes of breast cancer, loss of full-length NRSF and induction of the 

truncated isoform has been associated with decreased time to disease 

recurrence, increased tumour size, and a higher number of lymph node 

metastases indicating an aggressive disease course (Wagoner et al., 2010). The 

tumour-suppressor function of NRSF is also supported in cell line models 

whereby knock-down of NRSF in low-metastatic breast cancer cells resulted in 

induction of the oncogene TAC1 and cellular proliferation and migration, whilst 

the opposite effect was observed following exogenous NRSF expression in 
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aggressive cell types (Reddy et al., 2009). We have previously demonstrated a 

role for the truncated protein in small cell lung carcinoma (SCLC) suggesting 

that the levels of these different isoforms may dictate tumorigenicity (Coulson 

et al., 1999, Coulson et al., 2000, Quinn et al., 2002). This is supported by a 

recent study which showed extensive alternative splicing of this transcriptional 

regulator between tumour and adjacent normal tissue in patients with kidney, 

liver and lung cancer (Chen and Miller, 2013), indicating complex and context-

specific mechanisms of NRSF regulation in cancer.    

In this section, modulation of the MIR137 internal promoter VNTR in the 

human MCF-7 adenocarcinoma breast cancer cell line is explored. Potential 

differential regulation of MIR137 by both NRSF and the genotype of the VNTR 

are addressed as a mechanism that may be important in breast cancer due to 

the overlapping role of both MIR137 and NRSF in this cancer type. Genotypic 

variation of the VNTR in a clinical cohort for breast cancer is investigated to 

determine whether it can be used as a novel biomarker for breast cancer or to 

distinguish between BRCA (breast cancer, early onset) positive and negative 

subtypes. 
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6.7 Aims 

 Reporter gene analysis of the internal MIR137 promoter VNTR in human 

MCF-7 breast adenocarcinoma cells and compare to its regulation in SH-

SY5Y neuroblastoma cells  

 Address NRSF/sNRSF regulation over the region using over-expression 

constructs and ChIP  

 Compare the methylation status of the MIR137 promoters in human SH-

SY5Y and MCF-7 cells 

 Genotype analysis of the MIR137 VNTR in a breast cancer cohort  
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6.8 Results 

6.8.1 MIR137 transcripts are silenced in human MCF-7 breast cancer cells 

Consistent with silencing of miR-137 in breast tumours (Vrba et al., 

2013), the MIR137HG (AK094607), AK311400 and AK309618 mRNA 

transcripts which encode for this tumour-suppressor miRNA could not be 

detected in the human MCF-7 breast cancer cell line through RT-PCR analysis; 

although these transcripts are easily found in the neuroblastoma cell line SH-

SY5Y (Figure 6.7). Comparison of reporter gene expression driven by the 

reporter gene constructs for the internal MIR137 promoter VNTR (Imir137) 

and MIR137 VNTR alone (VNTRmir137) characterised in Chapter 4 was also 

performed in MCF-7 and SH-SY5Y cells to correlate the transcriptional activity 

of this regulatory domain against expression from the locus. The Imir137(4) 

and Imir137(12) promoter constructs, which contain a 4- and 12-copy repeat of 

the MIR137 VNTR, displayed promoter function in MCF-7 cells supporting a 3.8- 

and 6.6-fold increase in luciferase activity over the pGL3B vector control 

(***P<0.001), respectively. However, this activity was greatly reduced in 

comparison to SH-SY5Y cells with a fold difference of   17.3 and 11.32 in 

reporter gene activity observed between the two cell lines for the 4- and 12-

copy variants respectively (###P<0.001, significant difference between Imir137 

promoter activity between cell lines), Figure 6.7C. The low levels of reporter 

gene expression supported by the Imir137 promoter constructs in MCF-7 cells 

is in line with undetectable levels of the AK311400 and AK309618 mRNAs in 

this cell line which originate from this promoter (Figure 6.7A-B). Analysis of 

the MIR137 VNTR domain alone was also addressed, which was cloned into a 

reporter  gene  vector  containing  a  minimal  SV40  promoter   as    a   means   of  
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Figure 6.7. Gene expression profiling of MIR137 host genes in SH-SY5Y and MCF-7 cells. A, 

Schematic representation of the MIR137 gene locus showing the location of the precursor (pre)-

miR-137 and pre-miR-2682 sequences (grey boxes) relative to the non-protein coding RNA 

genes MIR137HG (AK094607), AK311400 and AK309618, which encode for these miRNAs. 

Exons are represented as boxes; introns as the connecting lines. A 15 bp variable number 

tandem repeat (VNTR) 6 bp 5’ of pre-miR-137 is shown as a black box; promoter CpG islands as 

green boxes. Region marked by the red hatched border represents the Imir137 promoter, the 

activity of which was assessed using reporter gene constructs (C). NRSF binding sites (BS) are 

marked by vertical arrows. Numbers represent genomic position in bp; +1 marks the first base 

of MIR137HG with negative and positive values marking upstream and downstream sequences, 

respectively. B, RT-PCR analysis of the MIR137 host gene mRNA expression in human MCF-7 

breast adenocarcinoma and SH-SY5Y neuroblastoma cell lines. Relative primer locations for the 

transcripts are denoted by horizontal arrows in the schematic, A. Primers for AK311400 also 

target AK309618. Expected band sizes for MIR137HG, AK311400 and AK309618 were 291 bp, 

274 bp and 451 bp, respectively. C, Graphs showing the average fold change in luciferase 

expression supported by the Imir137 promoter (left) and MIR137 VNTR alone (right) 

constructs over the control vector following transfection into SH-SY5Y and MCF-7 cells. 

Numbers in brackets represent VNTR copy number. For each transfection, n=4. Standard error 

is represented by error bars. *Significant changes in luciferase activity over control levels. 
#Significant changes in luciferase activity between the 4- or 12-copy VNTR variant constructs 

and cell lines. **/##p<0.01, ***/###p<0.001. [Figure presented on opposite page]. 
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assessing the regulatory influence of this repetitive element on the level of gene 

expression driven by the minimal promoter. As shown in Figure 6.7C, both the 

VNTRmir137(4) and VNTRmir137(12) constructs, containing 4- and 12-copy 

repeats of the MIR137 VNTR respectively, significantly decreased the level of 

transcription relative to the pGL3P control vector (***P<0.001 and **P<0.01, 

respectively), however the VNTR does not possess major regulatory properties 

such as enhancer or repressor functions. Activity directed by the MIR137 VNTR 

constructs was significantly different between the two cell lines (###P<0.001 

and ##P<0.01; 1.5- and 1.2-fold change for the 4- and 12-copy variants, 

respectively), however the difference was not as dramatic as that observed for 

the Imir137 promoter constructs.  

Epigenetic silencing is one mechanism through which miR-137 is down-

regulated in tumourgenesis (Liu et al., 2011, Chen et al., 2011b, Silber et al., 

2008, Vrba et al., 2013). The MIR137 gene locus contains two CpG islands (CGIs) 

(Figure 6.7A); one located 3.75 Kb upstream of the transcription start site of 

the non-coding RNA gene MIR137HG and the second encompassing the Imir137 

promoter VNTR. Hypermethylation of the Imir137 promoter is therefore one 

hypothesis for the repression of miR-137 expression which could be a potential 

early event in the progression of a tumour. Due to the high GC-content and 

repetitive nature of the MIR137 VNTR within the Imir137 promoter, increases 

in copy number may result in hypermethylated states and silencing of genes 

expressed from the region. To assess whether the MIR137 VNTR sequence is a 

potential CGI, defined as sequence ranges were the observed over expected 

value of CpG dinucleotides (y-value) is greater than 0.6 and the GC-content is 

greater than 50%, and whether or not VNTR copy number influences the GC 
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potential of the Imir137 promoter region, in silico analysis of the 4- and 12-copy 

Imir137 promoter VNTR variants was performed using the Sequence 

Manipulation Suite (http://www.bioinformatics.org/sms2/) (Gardiner-Garden 

and Frommer, 1987), see Methods section 2.2.6.7. This software uses a 200 bp 

sliding-window approach, moving across the input sequence at 1 bp intervals to 

identify potential CGIs. Using this method, based on a 200 bp stretch of 

sequence the 4-copy variant had a y-value of 0.83 and a GC-content of 63%, 

whereas the 12-copy variant had a y-value of 1.02 and a GC-content of 74%, 

Figure 6.8A. This confirmed that the GC potential of the Imir137 promoter was 

positively correlated with increased copy number, which could influence 

promoter hypermethylation and silencing of miR-137; a potential epigenetic 

mechanism involved in tumourgenesis.  

To address promoter methylation over the MIR137 gene locus in MCF-7 

cells as a potential mechanism silencing the MIR137 transcripts in this cell line, 

methylated DNA immunoprecipitation (MeDIP) was performed (see Methods 

section 2.2.9) and compared to methylation patterns in SH-SY5Y cells in which 

the MIR137 transcripts are expressed (Figure 6.7B). In MCF-7 cells, enrichment 

of methylated DNA relative to unmethylated DNA was observed over the 

MIR137HG and Imir137 promoter CGIs (Figure 6.8B), which is consistent with 

undetectable levels of the transcripts originating from these promoters in this 

cell line (Figure 6.7B) and recent findings of promoter hypermethylation and 

miR-137 down-regulation in breast tumours (Vrba et al., 2013). The opposite 

was true of SH-SY5Y cells with strong signal in the unmethylated sample for 

both the MIR137HG and Imir137 CGIs, weaker signal in the methylated sample 

over the MIR137HG CGI and no methylation over the Imir137 CGI, Figure 6.8B.       

http://www.bioinformatics.org/sms2/�


 

306 
 

MIR137HG CGI

Imir137 promoter CGI

SH-SY5Y               MCF-7

U
nm

et
hy

la
te

d

M
et

hy
la

te
d

U
nm

et
hy

la
te

d

M
et

hy
la

te
d

A 

ImiR137(4): y-value = 0.83, GC content = 63% 

TGGGAGAGCACCAGGTAAACTGAAGGTTACTTGTCACTCCCACTTGTGCCCAAAAAGCCTTGCCACAT
CTTCCCTCCTCACTGGAAAGACAGCACTCTTCTGTGTTAAGTATTTGATTTTGTGATTTGTCTTTCAG
AATTGGAAATAGAGCGGCCATTTGGATTTGGGCAGGAAGCAGCCGAGCACAGCTTTGGATCCTTCTTT
AGGGAAATCGAGTTATGGATTTATGGTCCCGGTCAAGCTCAGCCCATCCCCAGGCAGGGGCGGGCTCA
GCGAGCAGCAAGAGTTCTGGTGGCGGCGGCGGCGGCAGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGG
TAGCAGCGGCAGCGGCAGCTTGGTCCTCTGACTCTCTTCGGTGACGGGTATTCTTGGGT 
 

ImiR137(12): y-value = 1.02, GC content = 74% 

TGGGAGAGCACCAGGTAAACCGAAGGTTACTTGTCACTCCCACTTGTGCCCAAAAAGCCTTGCCACAT
CTTCCCTCCTCACTGGAAAGACAGCACTCTTCTGTGTTAAGTATTTGATTTTGTGATTTGTCTTTCAG
AATTGGAAATAGAGCGGCCATTTGGATTTGGGCAGGAAGCAGCCGAGCACAGCTTTGGATCCTTCTTT
AGGGAAATCGAGTTATGGATTTATGGTCCCGGTCAAGCCCAGCCCATCCCCAGGCAGGGGCGGGCTCA
GCGAGCAGCAAGAGTTCTGGTGGCGGCGGCGGCGGCAGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGG
TAGCAGCGGCAGCGGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGTAGCAGCG
GCAGCGGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGTAGCAGCGGCAGCGGC
AGCTTGGTCCTCTGACTCTCTTCGGTGACGGGTATTCTTGGGT 

 

 
B 

 

 

 

 

 

 

 

 

 
 

Figure 6.8. Promoter methylation over the MIR137 gene locus. A, In silico analysis of CpG 
potential of different alleles of the MIR137 variable number tandem repeat (VNTR)  was 
performed using the web-based Sequence Manipulation Suite (http://www.bioinformatics.org/ 
sms2/cpg_islands.html) which calculates the observed/expected frequency of CpG 
dinucleotides (y-value) using a 200 bp sliding-window approach, moving across the sequence at 
1 bp intervals (Gardiner-Garden and Frommer, 1987). CpG islands (CGIs) are defined as regions 
of sequence with a y-value >0.6 and a GC-content >50%. The 4- and 12-copy internal MIR137 
(Imir137) promoter variants were analysed; grey highlighted sequence represents the 200 bp 
range displaying the highest CpG potential, single and double underlined sequence marks the 
MIR137 VNTR and precursor-miR-137, respectively. B, Methylated DNA immunoprecipitation 
was performed using genomic DNA extracted from SH-SY5Y and MCF-7 cells which are 
homozygous for the 4-copy VNTR. PCR analysis was performed using primers for the 
MIR137HG and Imir137 promoter CGIs.   

http://www.bioinformatics.org/%20sms2/cpg_islands.html�
http://www.bioinformatics.org/%20sms2/cpg_islands.html�
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6.8.2 NRSF over-expression enhances Imir137 promoter activity in MCF-

7 breast cancer cells  

NRSF has been shown to function as both an oncogene and tumour-

suppressor in a tissue-specific manner (Negrini et al., 2013). In non-neuronal 

tissues, NRSF functions to suppress tumourigenesis in part through inhibition of 

cellular proliferation (Westbrook et al., 2005), with low levels of the full-length 

protein detected in carcinomas of the breast, colon and lung (small cell lung 

carcinomas, SCLC) which has been associated with cancer progression (Lv et al., 

2010, Wagoner et al., 2010, Coulson et al., 2000). Low levels of the tumour-

suppressor miRNA miR-137, a target gene of NRSF (Warburton et al., 2014), has 

also been associated with these cancers types (Balaguer et al., 2010, Liu et al., 

2011, Zhao et al., 2012, Zhu et al., 2013a), suggesting that a common mechanism 

implicating both NRSF and miR-137 may be involved in cancer progression. We 

therefore addressed whether endogenous NRSF interacted with the MIR137 

gene locus in MCF-7 breast cancer cells through ChIP. As no commercial 

antibody is available for the truncated NRSF variant sNRSF, which has been 

shown to be up-regulated in more aggressive subtypes of both breast and lung 

cancer (Wagoner et al., 2010, Coulson et al., 2000, Chen and Miller, 2013), ChIP 

was performed using two different NRSF antibodies targeting both the amino- 

and carboxy-terminals of the full-length protein to detect enrichment of all 

NRSF isoforms and specific binding of the full-length protein, respectively. NRSF 

was shown to bind to two predicted NRSF binding sites (BS) identified from 

ENCODE ChIP-seq data; one over the Imir137 promoter (BSII) and the second 

within intron 1 of the MIR137HG gene (BSII, position +1,029-1,241 bp), Figure 

6.7A and 6.9A. An antibody raised against the RNA pol II C-terminal domain 
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(CTD) sequence, phosphorylated at the serine 5, was also used to address 

transcriptionally active promoter regions. This showed faint signal at the 

Imir137 promoter region and no signal at NRSF BSI located within intron 1 of 

the MIR137HG gene (Figure 6.9A), which is consistent with absence of MIR137 

transcript expression in this cell line. Absence of RNA pol II binding at NRSF BSI 

may reflect its intronic location (Figure 6.7A), however ENCODE ChIP-seq data 

does predict RNA pol II binding at this region (see Discussion; Figure 6.10).  

We also addressed the effects of exogenous expression of NRSF in MCF-7 

cells in modulating the activity of the Imir137 promoter and VNTRmir137 

reporter gene constructs. Over-expression of full-length NRSF (RE-EX1 

construct) and sNRSF resulted in significant up-regulation of reporter gene 

activity directed by the Imir137 promoter in MCF-7 cells (Figure 6.9B, 

***P<0.001 and **P<0.01; NRSF and sNRSF respectively supported 1.76- and 

1.63-fold increases in luciferase activity over control conditions for the 4-copy 

variant and 1.57-and 1.54-fold increases for the 12-copy variant). The action of 

full-length NRSF on the VNTR alone in MCF-7 cells showed significant up-

regulation in reporter gene activity relative to the pGL3P control vector and 

control cells that were not subjected to NRSF over-expression (Figure 6.9C). 

Similar to control conditions, over-expression of sNRSF was slightly repressive 

relative to luciferase activity directed by the pGL3P control vector when co-

transfected with the VNTRmir137 constructs, Figure 6.9C. The action of full-

length NRSF and sNRSF in modulating the levels of transcription directed by the 

MIR137 VNTR domain was nominal in the MCF-7 cell line and did not support 

major enhancer or repressor functions under the conditions tested. 
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Figure 6.9. NRSF binds to the Imir137 promoter in human MCF-7 breast cancer cells and 
acts to increase its transcriptional activity. A, ChIP of NRSF binding over the MIR137 gene in 
MCF-7 cells. PCR analysis was performed using primers targeting intron 1 of MIR137HG, NRSF 
binding site (BS) I and the MIR137 internal promoter (Imir137), NRSF BSII. Antibodies against 
histone H3, a positive control for the ChIP; RNA pol II (C-terminal domain phosphorylated at 
serine 5 to show transcriptionally active promoter regions) and NRSF, two separate antibodies 
targeting the N- and C-terminal of full-length NRSF were used. B-C, Graphs showing the average 
fold change in luciferase expression supported by the Imir137 promoter (B) and VNTRmir137 
(C) constructs over control vectors following co-transfection with the RE-EX1 (full-length NRSF) 
or sNRSF expression constructs. Dashed horizontal line in C marks expression level of pGL3P 
control. D, Comparison of reporter gene activity between SH-SY5Y and MCF-7 cells following co-
transfection of Imir137(4) with RE-EX1 or sNRSF expression constructs. Trend lines for 
luciferase activity in SH-SY5Y and MCF-7 cells are shown as a block and dashed line. For each 
transfection, n=4. Error bars represent standard error. *Significant changes in luciferase activity 
over vector control levels and/or treatment conditions (displayed in a table below the 
corresponding graph), or #significant changes between the 4- and 12-copy variants. */#p<0.05, 
**/##p<0.01, ***/###p<0.001. E, RT-PCR of MIR137 transcript expression following RE-EX1 and 
sNRSF over-expression in MCF-7 cells, n=3. *Expected band sizes (see legend for Figure 6.7B).  
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NRSF has been shown to function as both an oncogene and tumour-

suppressor in neuronal and non-neuronal tissues, respectively (Negrini et al., 

2013), whereas the levels of miR-137 are reduced in several tumour types 

regardless of origin (i.e. neuronal verses non-neuronal) (Zhu et al., 2013a, Ando 

et al., 2009, Kozaki et al., 2008, Bandres et al., 2009, Langevin et al., 2010, 

Langevin et al., 2011, Balaguer et al., 2010). To explore NRSF-mediated 

regulation of miR-137 expression in both neuronal and non-neuronal cancer 

cells, the effect of full-length NRSF and sNRSF over-expression on reporter gene 

activity supported by the Imir137 promoter was compared across the SH-SY5Y 

neuroblastoma and MCF-7 breast cancer cell lines. To control for the 

endogenous effects of the Imir137 promoter, activity of the Imir137(4) 

construct was addressed due to both cell lines being homozygous for the 4-copy 

variant, determined by genotype analysis (data not shown). Consistent with its 

dual role as an activator and suppressor of tumourgenesis, NRSF over-

expression in SH-SY5Y cells supported a ~30% reduction in Imir137 promoter 

activity relative to control cells (***P<0.001), whereas a ~80% increase in 

activity was observed in MCF-7 cells (***P<0.001), Figure 6.9D. This would 

imply that an increase in NRSF expression would correlate with transcriptional 

down-regulation of the tumour-suppressor miR-137 in neuroblastoma cells but 

increase its expression levels in breast cancer cells. This has previously been 

demonstrated in SH-SY5Y cells whereby over-expression of full-length NRSF 

resulted in down-regulation of the AK311400 and AK309618 transcripts which 

encode for miR-137 (Warburton et al., 2014). Following NRSF over-expression 

in MCF-7 cells, the levels of MIR137HG, AK311400 and AK309618 mRNA 

expression were still below detectable levels by RT-PCR analysis (Figure 6.9E) 
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which may be the result of epigenetic silencing such as promoter methylation 

(Figure 6.8B). However MIR137 transcript levels were still undetectable 

following 72 hour treatment of MCF-7 cells with the DNA demethylation agent 

5-Aza-2′-deoxycytidine (data not shown) indicating that additional repressive 

mechanisms other than DNA methylation are involved in silencing of the 

MIR137 gene locus in MCF-7 cells. The effects of sNRSF over-expression on 

Imir-137 did not significantly differ from control conditions in SH-SY5Y cells. 

Similar to the full-length protein, sNRSF supported a ~60% increase in Imir137 

promoter activity in MCF-7 cells (***P<0.001), Figure 6.9D. The truncated 

sNRSF variant was not detectable by RT-PCR in MCF-7 cells (data not shown) 

and is only present at very low ratios in SH-SY5Y cells relative to the full-length 

protein (see Appendix 3) which may account for the minimal effects observed 

following over-expression of this isoform.  

 

6.8.3 MIR137 VNTR as a biomarker for breast cancer 

Our group has extensive experience on the potential role of VNTRs in 

acting as clinical markers of predisposition to neurological disease, offering a 

mechanism by which regulatory DNA could support differential expression of 

the target gene based on copy number of the VNTR (Paredes et al., 2012, Ali et 

al., 2010, Haddley et al., 2008, Breen et al., 2008, Roberts et al., 2007, Guindalini 

et al., 2006, Klenova et al., 2004, Vasiliou et al., 2012). More recently the group 

extended this analysis to a VNTR within the oestrogen related receptor gamma 

gene and its association to breast cancer (Galindo et al., 2011). Work presented 

in this chapter and previously (Chapter 4) has shown that different copy-

number variants of the internal promoter VNTR within the MIR137 gene can 



 

313 
 

support differential reporter gene expression in a cell-specific and stimulus-

inducible manner in vitro (Warburton et al., 2014). miR-137 has been identified 

as a tumour-suppressor in several cancer types including breast cancer in 

which levels of promoter hypermethylation have been correlated with its down-

regulation in breast tumours (Vrba et al., 2013). In silico analysis of differences 

in the GC potential of the 4- and 12-copy variants of the Imir137 promoter 

VNTR showed that increased copy number was positively correlated with the 

overall percentage GC-content and the number of CpG dinucleotides over the 

region (Figure 6.8A). This suggests that VNTR genotype may influence 

hypermethylated states in the development or progression of a tumour. To 

address a potential role of the MIR137 VNTR as a novel biomarker for breast 

cancer or to distinguish between BRCA positive and negative subtypes, 

genotype analysis was performed in a breast cancer and matched control cohort 

(see Materials section 2.1.4.1 for cohort details). A simple observation of the 

genotype frequencies indicated that the BRCA1 grouping had a trend towards 

heterozygous individuals possessing a common 4-copy allele with a larger rare 

copy-number variant, Table 6.1. This was confirmed by Clump analysis (see 

Methods section 2.2.10.1), used for significance-testing of allele and genotype 

frequency data between the different groupings of the breast cancer cohort, 

which showed there was a significant difference (0.046) between BRCA1+ and 

BRCA Wt individuals (Table 6.2). However due to the small size of the cohort, 

this preliminary analysis requires replication in a larger study cohort. No such 

genetic correlation was observed between BRCA Wt and BRCA2+ or BRCA1/2+ 

individuals combined, suggesting that the MIR137 VNTR could act as a novel 

biomarker for predisposition to breast cancer in BRCA1+ individuals. Genotype 
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analysis was performed blind to clinical data relating to age at diagnosis, 

disease severity or treatment responses but would be interesting to follow-up 

to determine any correlation between VNTR copy number and disease 

prognosis.  

 

 

Table 6.1. Genotype analysis of the MIR137 VNTR in a breast cancer cohort 
 

Genotype Controls BRCA Wt BRCA1+ BRCA2+ 

Number 
of Counts 

% Number 
of Counts 

% Number 
of Counts 

% Number 
of Counts 

% 

4_4 51 52.58 47 52.81 15 39.47 17 47.22 
4_5 9 9.28 9 10.11 4 10.53 8 22.22 
4_6 8 8.25 13 14.61 5 13.16 5 13.89 
4_7 9 9.28 3 3.37 4 10.53 3 8.33 
4_8 6 6.19 4 4.49 0 0.00 1 2.78 
4_9 2 2.06 4 4.49 1 2.63 0 0.00 

4_10 1 1.03 3 3.37 4 10.53 0 0.00 
4_11 2 2.06 0 0.00 2 5.26 1 2.78 
4_12 0 0.00 0 0.00 2 5.26 0 0.00 
3_4 1 1.03 0 0.00 0 0.00 0 0.00 
5_5 0 0.00 0 0.00 1 2.63 0 0.00 
5_6 3 3.09 0 0.00 0 0.00 0 0.00 
5_7 1 1.03 1 1.12 0 0.00 0 0.00 
5_8 1 1.03 1 1.12 0 0.00 0 0.00 

5_12 0 0.00 1 1.12 0 0.00 0 0.00 
6_8 0 0.00 1 1.12 0 0.00 0 0.00 
6_9 1 1.03 1 1.12 0 0.00 0 0.00 

7_10 2 2.06 0 0.00 0 0.00 1 2.78 
8_10 0 0.00 1 1.12 0 0.00 0 0.00 
Total      97    89      38      36 

 

 

Note: Values represent the number of individuals and percentage frequency of the observed 

genotypes for the MIR137 variable number tandem repeat (VNTR). Alleles are named 3-12, 

representing the different copy numbers of the 15 bp VNTR of which 4-copies is the most 

common variant. Bold text represents a higher percentage frequency of a particular genotype in 

control and BRCA wild type (Wt) individuals compared to BRCA+ individuals or vice-versa. 

BRCA+ individuals are those that tested positive for germline mutations within the BRCA1 or 

BRCA2 genes; BRCA Wt individuals are those that did not test positive for such mutations.       
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Table 6.2. Significance-testing of genotype data in a breast cancer cohort using Clump analysis 
  
 

Samples T1         T2 T3      T4 

BRCA Wt and controls 0.379   0.230 0.391   0.395 

BRCA1 and controls 0.087   0.255 0.171   0.066 

BRCA2 and controls 0.782   0.838 0.583   0.723 

BRCA Wt and BRCA1 0.104   0.105 0.169   0.046* 

BRCA Wt and BRCA2 0.403   0.185 0.572   0.437 

BRCA1 and BRCA2 0.293   0.053 0.173   0.191 

BRCA+ and controls 0.227   0.033* 0.171   0.267 

BRCA+ and BRCA Wt 0.187   0.257 0.224   0.214 

 
 

Note: The Monte-Carlo simulation statistic from Clump (10,000 simulations, T4 (2x2 clump) 

statistic, Chi-Sq=15.79, d.f.=1) indicated a significant genotypic association (p=0.046). This 

suggests at least a nominal association of the MIR137 VNTR with a BRCA1 mutation when 

compared with BRCA wild type (Wt) controls. The genotypes clumped together in the first 

column of the 2x2 table were 1 2 3 5 6 11 12 13 14 15 16. A significant association was also 

reached when BRCA positive individuals were compared with control samples (10,000 

simulations, T2 (columns with small expected values grouped together) statistic, Chi-Sq=8.75, 

d.f.=3), however this test is thought to be less sensitive in detecting associations compared with 

normal chi-squared (T1) or the chi-squared for the clumped 2x2 table (T4) statistics. 
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6.9 Discussion 

Dysregulation of miR-137 has been associated with several cancer types 

including breast, gastric, glioma, lung, uveal melanoma and squamous cell 

carcinoma of the head and neck (Zhu et al., 2013a, Ando et al., 2009, Kozaki et 

al., 2008, Bandres et al., 2009, Langevin et al., 2010, Langevin et al., 2011, 

Balaguer et al., 2010). Several studies have shown that miR-137 functions as a 

tumour-suppressor in part through inhibition of cell proliferation and invasion; 

cellular processes associated with tumourigenesis (Silber et al., 2008, Bier et al., 

2013, Balaguer et al., 2010, Althoff et al., 2013, Bemis et al., 2008). Epigenetic 

silencing of miR-137 is thought to be one mechanisms involved in dysregulation 

of this miRNA in tumourigenesis. This is supported from our in vitro analysis of 

MIR137 primary transcript mRNA expression in MCF-7 breast cancer cells 

which were undetectable across a range of conditions including treatment with 

the demethylation drug 5-Aza-2′-deoxycytidine and also clinically in a study of 

breast tumour samples which correlated promoter DNA hypermethylation with 

miR-137 down-regulation (Vrba et al., 2013). The bioinformatic and functional 

data on the Imir137 promoter presented in this chapter and previously in 

Chapter 4 suggests a model in which the genotype of the VNTR could support 

differential gene expression from the region (Warburton et al., 2014), for 

example through altering the number of binding sites for transcription factors 

or epigenetic regulators within this identified regulatory domain which in turn 

could result in chromatin remodelling and gene activation or silencing. In 

relation to cancer, differential expression of miR-137 has not only been 

observed between tumour verses normal tissue samples but also in low versus 

high grade tumours as demonstrated in gliomas (Silber et al., 2008, Chen et al., 
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2012), suggesting that low levels of miR-137 could be related to poor disease 

prognosis.  

Given that miR-137 promoter hypermethylation is associated with 

cancer, it can be hypothesised that individuals carrying higher repeat alleles of 

this VNTR will be more susceptible to tumour development and/or disease 

progression than those carrying lower copy-number variants as a result of the 

increased number of CpG residues available for methylation. Bioinformatic 

analysis of GC-potential over the Imir137 promoter for the functionally distinct 

4- and 12-copy variants of this regulatory domain showed that the larger VNTR 

had a significantly higher percentage of overall GC-content and CpG residues 

than the common 4-copy variant (Figure 6.8A), suggesting a greater potential 

for hypermethylated states in individuals carrying higher copy alleles. We 

therefore addressed whether the VNTR could be used as a novel biomarker for 

breast cancer through genotype analysis of the MIR137 VNTR in a breast cancer 

and matched control cohort. This showed a significant difference in genotype 

frequencies between BRCA Wt and BRCA1 positive individuals in this small 

clinical cohort, which may indicate an additional predisposing factor in the 

development of breast cancer in this disease group; however this requires 

replication in a larger study cohort. A recent study has shown that BRCA1 

functions to up-regulate miRNA biogenesis and can directly interact with the 

primary transcripts from which miRNAs are encoded through recognition of the 

secondary RNA structure of these miRNA genes (Kawai and Amano, 2012). It 

has been shown that the 12-copy MIR137 VNTR affects the processing 

efficiency of pri-miR-137 in melanoma cell lines, potentially through altering 

the secondary structure of the primary miRNA transcript (Bemis et al., 2008). 



 

318 
 

As shown in Figure 6.10 below, ENCODE ChIP-seq data indicates signal for 

BRCA1 binding at a region overlapping with the NRSF BSI within intron 1 of the 

MIR137HG primary transcript, providing a molecular mechanism through 

which BRCA1 mutations and higher copy numbers of the MIR137 VNTR could 

interact to make an individual susceptible to breast cancer through down-

regulation of miR-137 levels within the cell. BRCA1 has been shown to interact 

with the SWI/SNF chromatin-remodelling complex which forms a super-

complex with NRSF and its co-regulatory factors in the regulation of neuronal 

gene expression in neuroblastoma and lung cancer cell lines (Hill et al., 2004, 

Loe-Mie et al., 2010, Watanabe et al., 2006). A complex regulatory network 

implicating several epigenetic factors may be involved in the modulation of 

miR-137 expression with genetic variants embedded within the locus acting to 

modify these levels of transcription through differential interaction with 

regulatory factors, such as transcription factors and CpG binding proteins or 

through influencing the secondary structure and processing of pri-miRNA genes 

(Szulwach et al., 2010, Warburton et al., 2014, Bemis et al., 2008). This could 

have significant downstream consequences on a plethora of miR-137 gene 

targets involved in tumourigenesis including those implicated in breast cancer, 

such as ERRα which has been associated with the proliferative and migratory 

capacity of breast cancer cells and EZH2 implicated in anchorage-independent 

growth and cell invasion of mammary epithelia cell lines (Zhao et al., 2012, 

Szulwach et al., 2010, Kleer et al., 2003, Luo et al., 2013). 
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Figure 6.10. Transcription factor binding over the MIR137 gene locus. ENCODE ChIP-seq 

data (March 2012 release) identifies BRCA1 binding within the primary transcript of miR-137 

(pri-miR-137), upstream of a variable number tandem repeat domain previously identified as 

altering the secondary structure of pri-miR-137. Image generated using the UCSC Genome 

Browser (https://genome.ucsc.edu/index.html).   

 

 

NRSF has been proposed to function as both a tumour suppressor and 

oncogene dependent upon cellular context. For example, in neuronal cells and 

tumour types such as glioblastomas, medulloblastomas and neuroblastomas it 

has been shown to be oncogenic, whereas in carcinomas of the lung, breast and 

colon it acts as a tumour suppressor (Negrini et al., 2013). This is supported by 

the observed down-regulation of both Imir137 promoter activity, assessed 

through analysis of reporter gene expression relative to control cells, and 

AK311400 and AK309618 mRNA expression, which encode for the tumour-

suppressor miR-137, following over-expression of NRSF in the SH-SY5Y 

neuroblastoma cell line (Warburton et al., 2014). In contrast, in MCF-7 breast 

cancer cells we showed that NRSF over-expression significantly up-regulated 

reporter gene activity supported by the Imir137 promoter, which may reflect its 

https://genome.ucsc.edu/index.html�


 

320 
 

role as a tumour suppressor through up-regulation of miR-137 which also 

functions as a tumour suppressor and has been shown to be significantly down-

regulated in both breast cancer cell lines and tumours (Vrba et al., 2013). Over-

expression of sNRSF in our tissue culture model had similar effects on Imir137 

reporter gene to that of the full-length protein which may reflect its specificity 

in more aggressive tumour subtypes as previously demonstrated in breast and 

lung (SCLC) tumours (Wagoner et al., 2010, Coulson et al., 2000).    

 

6.10 Summary 

Aberrant epigenetic modulation of the MIR137 gene, such as DNA hyper-

methylation, is often observed in tumourigenesis and is considered an early 

event in the progression of the tumour. We have extended our recently 

characterised regulatory pathway involving NRSF-mediated transcriptional 

regulation of the internal MIR137 promoter VNTR, hypothesised to be an 

important mechanism in neurological dysfunction relevant to schizophrenia, to 

an in vitro model of breast cancer. We also identified a preliminary association 

between MIR137 VNTR genotype and breast cancer susceptibility in individuals 

carrying the BRCA1 mutation relative to BRCA Wt individuals that also have 

breast cancer. We propose that the molecular mechanisms underpinning this 

genetic association could be related to the disrupted processing of the primary 

miRNA transcripts encoding for the tumour suppressor miR-137 in the 

presence of high copy-number variants of the MIR137 VNTR. 
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Chapter 7 

 

Thesis Summary 
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7.1 Project overview 

This thesis provides novel insights into the role of NRSF in regulating the 

transcription of the schizophrenia genome wide associated gene, MIR137, 

providing a functional annotation of the regulatory role of genetic variants 

embedded within this disease-susceptibility locus. In line with our initial 

project aims, several key observations were made:  

 An internal promoter (Imir137) within the MIR137 gene locus identified 

from bioinformatic analysis of the region which contains a highly 

polymorphic VNTR domain can support allele-specific reporter gene 

expression in vitro; a regulatory mechanism that is distinct from the GWAS 

SNPs for schizophrenia due to absence of linkage disequilibrium (LD) 

between these polymorphisms. 

 No clinical association was determined between the VNTR genotype or allele 

frequency and risk for schizophrenia; however a SNP within the Imir137 

promoter that displayed allele-specific reporter gene expression was found 

to be in strong LD with the GWAS SNP rs1625579, linking this regulatory 

domain to schizophrenia and suggesting that an associated haplotype 

conferring risk for schizophrenia may be flanked by these two markers. 

 A preliminary association between MIR137 VNTR genotype and breast 

cancer susceptibility was observed in individuals carrying the BRCA1 

mutation relative to BRCA Wt individuals that also have breast cancer which 

may reflect disrupted processing of the primary miR-137 transcripts in the 

presence of high copy-number variants of the MIR137 VNTR. 



 

323 
 

 NRSF can bind to and modulate the activity of the Imir137 promoter in an 

allele-dependent, stimulus-inducible and cell/tissue-specific fashion. 

 Different NRSF isoforms have distinct regulatory potential over the Imir137 

promoter in a context-dependent manner which may be appropriate for 

different disease models in which the ratios of NRSF vary. 

 Genetic variants within the NRSF gene locus may also affect the regulation of 

NRSF expression or downstream target genes such as BDNF which may be 

an important mechanism for cognitive dysfunction associated with 

neurological disease. 

 

These observations highlight NRSF as an important modulator of GxE signals 

operating at the MIR137 locus and identify the NRSF-MIR137 regulatory model 

as a potential common mechanism associated with different disease states.  

    

7.2 NRSF as a ‘master regulator’ of common disease pathways 

Modulation of gene expression is important for establishing cell-specific 

phenotypes, with dysregulation of the cellular transcriptome being widely 

implicated in disease processes. Both short and medium-to-long-term 

alterations in cellular gene expression profiles can result from differences in the 

active complement of transcription factors within the nucleus. Exploration of 

the role of the transcription factor NRSF in modulating neuronal gene 

expression and cellular pathways important in neurological function and 

disease indicated that disrupting the normal cellular balance of NRSF within the 

cell may be a fundamental mechanism across a range of common disorders. 

These included cognitive dysfunction; polymorphisms within NRSF and its gene 
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target BDNF correlated with memory performance in patients with newly 

diagnosed epilepsy (Chapter 3), schizophrenia; NRSF was shown to be directly 

operating at the GWAS-identified MIR137 gene and was capable of directing 

allele-specific and stimulus-driven expression from the locus (Chapter 4), mood 

disorders; identified from in silico analysis of genes expression changes in 

response to mood-modifying drugs as a significant pathway regulating cellular 

processes relevant to mood (Chapter 5) and tumourigenesis; mediated cell-

specific regulation of the tumour-suppressor gene MIR137 supporting its role 

as both an oncogene and tumour-suppressor in different tumour types (Chapter 

6) (Negrini et al., 2013).  

The levels or activity of NRSF have previously been correlated with 

several pathological states including elevated levels in animal and tissue culture 

models of epilepsy and Huntington’s disease (Palm et al., 1998, Spencer et al., 

2006, Gillies et al., 2009, Zuccato et al., 2007, Johnson et al., 2008, Soldati et al., 

2013), decreased levels in the prefrontal cortex and hippocampal neurons of 

human patients with mild cognitive impairments and Alzheimer’s disease (Lu et 

al., 2014), inhibited function in cardiac hypertrophy and arrhythmias resulting 

from the induction of foetal cardiac genes in ventricular myocytes as 

demonstrated in a transgenic mouse model (Kuwahara et al., 2003) and 

modulation of endophenotypes associated with schizophrenia through 

regulation of GWAS candidate genes for schizophrenia, including TCF4 which 

has been identified as a target of miR-137 (Kwon et al., 2013), through 

interaction with the SWI/SNF chromatin remodelling complex (Loe-Mie et al., 

2010). There is considerable overlap between dysregulation of NRSF and miR-

137 in several pathological conditions, including Huntington’s disease, 
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Alzheimer’s disease, schizophrenia, cardiomyopathies and several cancer types 

(Lok et al., 2013, Soldati et al., 2013, Geekiyanage and Chan, 2011, The 

Schizophrenia Psychiatric GWAS Consortium, 2011, Ripke et al., 2013), which 

lends support to a common mechanism involving the NRSF-MIR137 pathway in 

disease processes. NRSF-dysregulation in animal models of Huntington’s 

disease has identified both BDNF and more recently miR-137 as disease-

associated targets (Zuccato et al., 2003, Soldati et al., 2013). Interestingly, 

manipulating the cellular levels of miR-137 has recently been shown to 

inversely affect BDNF mRNA expression in human neural progenitor cells, 

extending the NRSF-MIR137 regulatory model to include another schizophrenia 

candidate gene (Hill et al., 2014, Green et al., 2011, Dunham et al., 2009). The 

interaction between miR-137 and BDNF was not validated as being direct and 

there is not a predicted miR-137 recognition site over the BDNF gene locus 

(miRNA target prediction software available at microRNA.org – Targets and 

Expression, http://www.microrna.org/microrna/getGeneForm .do). This may 

reflect an indirect association between miR-137 and BDNF, for example through 

modulating the levels of EZH2 which is a known target of miR-137 (Szulwach et 

al., 2010) and is enriched over the BDNF gene locus as indicated from ENCODE 

data, Figure 7.1. EZH2 is a member of the polycomb repressive complex-2 and 

is important for the regulation of several developmental processes, including 

neurodevelopment, and is dysregulated in several cancer types (Ronan et al., 

2013). It has been shown to interact with the NRSF-signalling complex and 

function as a co-repressor of neuronal gene expression (Dietrich et al., 2012), 

and also targets miR-137 in vivo as demonstrated through ChIP analysis in rat 

cortical tissue (Chapter 6). This reinforces the idea of extensive double feedback 

http://www.microrna.org/microrna/getGeneForm%20.do�
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mechanisms operating between members of the NRSF-signalling complex in 

modulating target gene expression and disease pathways relevant to CNS 

dysfunction and cancer. 

 

 

 

Figure 7.1. Predicted binding of EZH2 (Enhancer of zeste homolog 2) over the human BDNF 

gene locus. Potential regulatory mechanism linking the inverse correlation between miR-137 

knock-down and BDNF up-regulation observed in human neural progenitor cells (Hill et al., 

2014). EZH2 is a co-repressor that is known to interact with the NRSF-silencing complex and is 

a direct target of miR-137. Image generated using ENCODE data available through the UCSC 

Genome Browser (https://genome.ucsc.edu/).  
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7.3 A neuroprotective role for NRSF  

Data presented in Chapter 6 indicates a potential neuroprotective role 

for the NRSF-MIR137 pathway in a rodent model relevant to ischemic-

tolerance. Such a role has previously been suggested for NRSF in animal models 

of kindling in which modulation of NRSF expression has been shown to block 

seizure-induced up-regulation of the proconvulsant gene BDNF and promote 

up-regulation of the anticonvulsant gene galanin (Spencer et al., 2006, Garriga-

Canut et al., 2006, Hu et al., 2011b). Elevated levels of NRSF in the normal 

ageing human brain has also been proposed to play a neuroprotective role 

against Alzheimer’s disease pathology through repressing target genes that 

promote cell death and β-amyloid (Aβ)-toxicity and increasing the expression of 

genes which mediate resistance against oxidative stress; reportedly through an 

indirect mechanism (Lu et al., 2014). Interestingly, miR-21, -132, -212, -330 and 

-1208 identified from in silico analysis as novel NRSF-target miRNAs and to be 

significantly associated with gene ontology pathways relevant to neurological 

disease processes (determined using the online DIANA-miRPath pathway 

analysis tool), were shown to interact with FOXO3 (Chapter 5); a Forkhead-box 

transcription factor recently identified as a mediator of neuronal death in 

primary hippocampal and cortical neurons in response to Aβ-toxicity (Sanphui 

and Biswas, 2013). These miRNAs therefore provide a possible link between 

NRSF down-regulation and Aβ-toxicity in Alzheimer’s disease. Furthermore, of 

these potential NRSF-target miRNAs, miR-330 and -1208 (as well as miR-210,    

-345, -658 and -607) were shown to have SVA (SINE-VNTR-Alu) insertions, 

which are hominid-specific transposable elements, within 120 Kb of their pre-

miRNA sequences, determined through bioinformatic analysis (see Chapter 5, 
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Table 5.3). SVAs have been associated with several diseases, including 

haemophilia, Duchenne muscular dystrophy, cystic fibrosis and several cancers, 

through disrupting the transcriptional regulation and processing of the target 

gene into which they have inserted (Hancks and Kazazian, 2012, Kaer and 

Speek, 2013, Savage et al., 2013, Savage et al., 2014). The miRNAs indentified 

from our in silico analysis may therefore present a novel set of targets involved 

in the pathology of a number of disease states and would be interesting to 

follow-up in future studies. The role of NRSF in modulating disease pathways, 

and whether it functions to promote or suppress them, is an extremely complex 

and tissue-specific process which likely reflects many factors including but not 

limited to cellular levels and compartmentalisation of the different NRSF 

isoforms, interaction of the NRSF-signalling complex with available co-binding 

partners, the composition and genomic location of the NRSE to which NRSF 

binds and the effect of environmental influences. 

 

7.4 NRSF as an integrator of GxE mechanisms in the CNS  

Predisposition to neuropsychiatric disease is not only governed by our 

genetic makeup but also the influence of gene variants on how we respond to 

our environment. Cellular responses to particular environmental exposures 

such as early life trauma, stress or urban living, which have been identified as 

risk-factors that can impact on our mental health (van Os et al., 2010), may not 

be reflected in our immediate behaviour but could leave a molecular footprint 

of the event which in later life may present as a neuropsychiatric phenotype 

when the individual is exposed other stressful stimuli. Genetic variation within 

regulatory networks that are associated with neuronal function may play an 
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important role in disease predisposition through impacting on the 

transcriptional machinery which governs cellular responses to an 

environmental challenge. NRSF interacts with a myriad of co-binding factors to 

regulate appropriate gene-expression in neuronal and non-neuronal tissues 

(Ooi and Wood, 2007). The NRSF-signalling complex could therefore be 

considered a central hub for co-ordinating the cellular transcriptome and 

epigenome in the maintenance of cellular homeostasis, with perturbations in 

this pathway having the scope to disrupt global gene expression due to its 

capacity to modulate hundreds of target genes in tandem through direct 

interaction or dynamic coupling with a vast repertoire of regulatory factors 

such as chromatin remodelling enzymes and non-coding RNAs which in turn 

have extensive downstream effects on gene expression (Bruce et al., 2004, Wu 

and Xie, 2006, Johnson et al., 2009, Mortazavi et al., 2006). The polymorphisms 

identified in this study to impart a genetic influence on disease phenotypes 

and/or to be implicated in regulatory mechanisms associated with cellular 

dysfunction may additively contribute to disease susceptibility through 

modifying the levels of the target candidate gene along the NRSF-signalling 

pathway. Analysis of the influence of these markers (NRSF rs1105434 and 

rs2227902; BDNF rs11030094, rs12273363, rs1491850, rs2030324 and 

rs3796529; and MIR137 VNTR) using eQTL data from different disease cohorts 

would allow for assessment of the proposed role of a disrupted regulatory 

pathway implicating the NRSF-signalling network as a potential common 

mechanism underlying disease aetiology. 

 

  



 

330 
 

7.5 Final conclusions 

The observations made in this thesis highlight the importance of GxE 

mechanisms in shaping the transcriptional landscape of disease-associated loci 

and point to NRSF as a potential modulator of genetic influences on cellular 

responses to environmental stimuli, which may be applicable to several disease 

states from neurological dysfunction to cancer. The use of bioinformatic 

approaches to predict potentially important regulatory domains within miRNA 

genes which may confer risk for disease susceptibility was successfully 

demonstrated in this study using the MIR137 gene locus as a model example. 

Other potential NRSF target miRNA genes which share common genomic 

features with the MIR137 gene locus (such as repetitive elements and 

overlapping CpG islands within their 5’ flank sequences), and have been 

identified from pathway analysis to play a significant role in cellular processes 

relevant to neurological disorders, might point to other important NRSF 

regulated miRNAs involved in disease processes.    
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Appendix 1: In vivo cortical spreading depression (CSD) model 

 

Animals and surgical preparation:  

Adult male Sprague-Dawley rats (350 ± 20 g, mean ± SE, n=6, Slaccas 

Laboratory Animal co., LTD, Shanghai) were housed with food and water 

available. All animal care and procedures adhered with Jiangsu Provincial 

Animal Use and Management Guidelines and were approved by the Ethical 

Committee of Xi’an Jiatong-Liverpool University.  

Animals were anaesthetized throughout surgical procedures with 

isoflurane (5% for induction, 2.5-3.5% during the surgery and 1.0-1.5% for 

maintenance) in O2: N2O (1:2), with animals breathing spontaneously.  For 

fitting of the dialysis probe, a 1 cm incision was made along the midline of the 

scalp to expose the surface of the skull. Two holes (diameter: anterior, 0.85 mm; 

posterior, 1mm) in the frontoparietal cortex were drilled carefully (coordinates: 

4 mm posterior to bregma, 2 mm lateral for CSD elicitation; 3 mm anterior to 

bregma, 2 mm lateral for CSD recording). A silver chloride electrode (diameter: 

250 μm) was implanted in the anterior hole (deep: 1.2 mm) and the reference 

electrode was placed under the scalp of the rat neck. Unless otherwise stated, 

both holes were filled with artificial cerebrospinal fluid (ACSF, 125 nM NaCl; 2.5 

nM KCl, 1.18 nM MgCl2, 1.26 nM CaCl2; pH 7.3 adjusted with 1 M NaOH, not 

buffered). Temperature of animals was maintained at 37 °C throughout the 

experiment. 
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CSD elicitation, electrophysiological recording and tissue preparation:  

Experiments were started one-hour post-surgery for stabilisation. In the 

CSD elicitation group (n=3), 2 μl 3M KCl in ACSF was micro-dropped onto the 

posterior hole. ACSF was used in the in sham control group (n=3). In both 

groups, five repeated episodes were elicited with 40 minute intervals for tissue 

recovery. Both electroencephalography (EEG) and direct current (DC) potential 

were derived from the recording electrode and reference electrode. The 

alternating current component in the 1–30 Hz window (5,000X overall 

amplification) provided the EEG, and the DC component (250X overall 

amplification) provided the extracellular DC-potential. All recorded variables 

were continuously digitalised, displayed on a monitor and stored using a 

personal computer equipped with an analogue/digital-converter. CSD was 

recognized as a large transient, negative shift of the DC-potential. In the CSD 

group, approximately 1-2 CSD wave(s) elicited by KCl was detected by the 

recording electrode in each episode. 

At the end of the fifth episode of CSD induction, the electrode was 

immediately removed and the wound sutured. A 24-hour recovery period was 

implemented before the rat was re-anaesthetised with isoflurane (5% in O2: 

N2O; 1:2) and sacrificed by cervical relocation. The cortex was excised from 

brain, cut into three pieces on ice and placed into 1.5 ml centrifuge tube for 

snap-freezing with liquid nitrogen and then stored at -80 °C. One piece of the 

frozen tissue was randomly selected as one sample. Figure A1.1 illustrates the 

CSD model used by our collaborators.  
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Changes in the DC potential produced by perfusion 
of  high K+-medium 

A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

Figure A1.1. Induction of cortical spreading depression (CSD) in the rodent brain. CSD is a 

transient (60-120 seconds) propagating wave of depolarization of cortical neurons and glial 

cells that spreads slowly (3-5 mm/min) across the cortex followed by a period of depressed 

electrophysiological activity. It is accompanied by massive redistribution of ions between 

extracellular and intracellular compartments and by a water influx into the cells and is 

characterised by a negative shift of 20-35 mV of the extracellular direct-current (DC). A, Micro-

dialysis probe used for inducing CSD by perfusion of 160 mM K+-medium into the cerebral 

hemisphere. Artificial cerebral spinal fluid (aCSF) is used for the sham control group. B, 

Representative changes in the DC potential produced by perfusion of high K+-medium. Grey 

peaks represent the cumulative CSD area (in mV per minute). The insert to the right shows the 

variables used for quantifying cortical sensitivity to K+-induced CSD and for analysing drug 

effects on individual CSD waves. H, CSD height in mV; L, latency for occurrence of the first CSD 

in minutes; N, number of CSD; W, width at 1/2 height in seconds; Sld, maximum slope of 

depolarisation in mV/minute; Slr, maximum slope of repolarisation in mV/minute. Image 

adapted from Obrenovitch et al. (2002).  
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Figure A1.2. Down-regulation of MIR137 target gene 24 hours post-CSD (cortical 

spreading depression). RT-PCR analysis of N-methyl-D-aspartate (NMDA) glutamate receptor 

subunit GRIN2A mRNA expression levels in rat cortical samples from sham control (n=3) and 

CSD (n=5) groups. CSD was elicited in the right (R) cortical hemisphere through KCl perfusion 

or artificial cerebral spinal fluid in sham controls. The left (L) hemisphere was used as an 

internal control. *P<0.05, significant difference in expression between sham and CSD groups 

following CSD induction. 

 

 

 

 

 

 

 

 

 

 

 



 

364 
 

Ba
sa

l

Ve
hi

cl
e 

co
nt

ro
l

10
 µ

M
 C

oc
ai

ne
 

Ba
sa

l

Ve
hi

cl
e 

co
nt

ro
l 

10
 µ

M
 C

oc
ai

ne
 

Ba
sa

l

Ve
hi

cl
e 

co
nt

ro
l

10
 µ

M
 C

oc
ai

ne
 

1 Hour                4 Hour              24 Hour

Bp

2,000 –

1,500 –

1,000 –

750 –

500 –
400 –
300 –
250 –
200 –

100 –

 

Appendix 2: Chromatin shearing by sonication in SH-SY5Y cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2. Fragment analysis of sheared SH-SY5Y chromatin. Sonicated chromatin samples 

were subjected to gel electrophoresis on a 1% agarose gel supplemented with ethidium 

bromide. Fragments were between 100 - 1,500 bp. 
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Appendix 3: NRSF over-expression assays in SH-SY5Y 

 

 

 

 

 

 

 

 

 

 

 

Figure A3. NRSF over-expression in SH-SY5Y cells. SH-SY5Y cells were transfected with 1 µg  

RE-EX1 (FL-NRSF) or pcDNA3.1_sNRSF (sNRSF) expression constructs and incubated for 24 

hours before total RNA was extracted and RT-PCR performed using 100 ng template cDNA per 

reaction. Untransfected (basal) cells were included for comparison and backbone alone 

(pcDNA3.1) as a negative control for the transfection. Top, FL-NRSF primers spanning exons 3, 

N and 4. Expected product sizes were 166 bp and 216 bp for FL-NRSF and sNRSF, respectively. 

Larger PCR product size of sNRSF is due to the presence of exon N. Bottom band (166bp) is the 

expected size for. Bottom, sNRSF primers targeting exons N and 4, expected band size was 124 

bp. Abbreviation: FL-NRSF, full-length NRSF. 
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Documents available upon request: 

Contact Professor John Quinn: jquinn@liverpool.ac.uk 

 

Appendix 4: Stata v.9.2 scripts generated by Dr. Fabio Miyajima, University of 

Liverpool, for the cross-sectional and longitudinal tests used in the genetic 

association study in epilepsy patients (Chapter 3).  

 

Appendix 5: MIR137 endophenotype analysis in schizophrenia cases and 

matched controls (Chapter 4), data generated by Dr. Bettina Konte, University of 

Halle-Wittenberg, Halle, Germany. 

 

Appendix 6: Global NRSF binding sites within miRNA genes plus 10 Kb flank 

regions (Chapter 5). 
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