63 research outputs found

    Understanding of water resilience in the Anthropocene

    Get PDF
    Water is indispensable for Earth resilience and sustainable development. The capacity of social-ecological systems to deal with shocks, adapting to changing conditions and transforming in situations of crisis are fundamentally dependent on the functions of water to e.g., regulate the Earth's climate, support biomass production, and supply water resources for human societies. However, massive, inter-connected, human interference involving climate forcing, water withdrawal, dam constructions, and land-use change have significantly disturbed these water functions and induced regime shifts in social-ecological systems. In many cases, changes in core water functions have pushed systems beyond tipping points and led to fundamental shifts in system feedback. Examples of such transgressions, where water has played a critical role, are collapse of aquatic systems beyond water quality and quantity thresholds, desertification due to soil and ecosystem degradation, and tropical forest dieback associated with self-amplifying moisture and carbon feedbacks. Here, we aggregate the volumes and flows of water involved in water functions globally, and review the evidence of freshwater related linear collapse and non-linear tipping points in ecological and social systems through the lens of resilience theory. Based on the literature review, we synthesize the role of water in mediating different types of ecosystem regime shifts, and generalize the process by which life support systems are at risk of collapsing due to loss of water functions. We conclude that water plays a fundamental role in providing social-ecological resilience, and suggest that further research is needed to understand how the erosion of water resilience at local and regional scale may potentially interact, cascade, or amplify through the complex, globally hyper-connected networks of the Anthropocene. © 2018 The Author

    Dry seasons and dry years amplify the Amazon and Congo forests’ rainfall self-reliance 

    Get PDF
    Rainfall is a key determinant of tropical rainforest resilience in South America and Africa, of which a substantial amount originates from terrestrial and forest evaporation through moisture recycling. Both continents face deforestation that reduces evaporation and thus dampens the water cycle, and climate change that increases the risk of water-stress induced forest loss. Hence, it is important to understand the influence of forest moisture supply for forest rainfall during dry periods. Here, we analyze mean-years and dry-years dry-season anomalies of moisture recycling in the South American (Amazon) and African rainforests (Congo) over the years 1980-2013. Annual average reliance of forest rainfall on their own moisture supply (ρfor) is 26 % in the Amazon and 28% in the Congo forest. In dry seasons, this ratio increases by 7% (or ~2 percentage points) in the Amazon and up to 30 % (or ~8 percentage points) in Congo. Dry years further amplify dry season ρfor in both regions by 4-5 %. In both Amazon and Congo, dry season amplification of ρfor are strongest in regions with a high mean annual ρfor. In the Amazon, forest rainfall self-reliance has declined over time, and in both Amazon and Congo, the fraction of forest evaporation that recycles as forest rainfall has declined over time. At country scale, dry season ρfor can differ drastically from mean annual ρfor (e.g., in Bolivia and Gabon, mean annual ρfor is ~30% while dry season ρfor is ~50 %). Dry period amplification of ρfor illuminates additional risks of deforestation as well as opportunities from forest conservation and restoration, and is essential to consider for understanding upwind forest change impacts on downwind rainfall at both regional and national scales

    Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change

    Get PDF
    Human actions compromise the many life-supporting functions provided by the freshwater cycle. Yet, scientific understanding of anthropogenic freshwater change and its long-term evolution is limited. Here, using a multi-model ensemble of global hydrological models, we estimate how, over a 145-year industrial period (1861–2005), streamflow and soil moisture have deviated from pre-industrial baseline conditions (defined by 5th–95th percentiles, at 0.5° grid level and monthly timestep over 1661–1860). Comparing the two periods, we find an increased frequency of local deviations on ~45% of land area, mainly in regions under heavy direct or indirect human pressures. To estimate humanity’s aggregate impact on these two important elements of the freshwater cycle, we present the evolution of deviation occurrence at regional to global scales. Annually, local streamflow and soil moisture deviations now occur on 18.2% and 15.8% of global land area, respectively, which is 8.0 and 4.7 percentage points beyond the ~3 percentage point wide pre-industrial variability envelope. Our results signify a substantial shift from pre-industrial streamflow and soil moisture reference conditions to persistently increasing change. This indicates a transgression of the new planetary boundary for freshwater change, which is defined and quantified using our approach, calling for urgent actions to reduce human disturbance of the freshwater cycle

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production

    Precipitationshed data for the moisture recycling analysis within the article "Megacity precipitationsheds reveal tele-connected water security challenges"

    Get PDF
    These data are the output of a global moisture tracking model. There are output files for 29 megacities from the original analysis. Each file contains a globally gridded dataset of evaporation that eventually falls as precipitation in each of the megacity regions, i.e. precipitationshed data. The data is in a Matlab matrix, with dimensions of [years, months, latitude, longitude]. For additional details on how the data were produces, please query the original publication.Urbanization is a global process that has taken billions of people from the rural countryside to concentrated urban centers, adding pressure to existing water resources. Many cities are specifically reliant on renewable freshwater regularly refilled by precipitation, rather than fossil groundwater or desalination. A precipitationshed can be considered the "watershed of the sky" and identifies the origin of precipitation falling in a given region. In this paper, we use this concept to determine the sources of precipitation that supply renewable water in the watersheds of the largest cities of the world. We quantify the sources of precipitation for 29 megacities and analyze their differences between dry and wet years. Our results reveal that 19 of 29 megacities depend for more than a third of their water supply on evaporation from land. We also show that for many of the megacities, the terrestrial dependence is higher in dry years. This high dependence on terrestrial evaporation for their precipitation exposes these cities to potential land-use change that could reduce the evaporation that generates precipitation. Combining indicators of water stress, moisture recycling exposure, economic capacity, vegetation-regulated evaporation, vegetation-regulated runoff, land-use change, and dry-season moisture recycling sensitivity reveals five highly vulnerable megacities (Karachi, Bengalaru, Delhi, Istanbul, and Wuhan). A further nine megacities were found to have medium vulnerability with regard to their water supply. We conclude that understanding how upwind landscapes affect downwind municipal water resources could be a key component for understanding the complexity of urban water security.The Swedish Research Council, FORMAS

    Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    No full text
    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner
    corecore