97 research outputs found

    The LBFGS Quasi-Newtonian Method for Molecular Modeling Prion AGAAAAGA Amyloid Fibrils

    Get PDF
    Experimental X-ray crystallography, NMR (Nuclear Magnetic Resonance) spectroscopy, dual polarization interferometry, etc are indeed very powerful tools to determine the 3-Dimensional structure of a protein (including the membrane protein); theoretical mathematical and physical computational approaches can also allow us to obtain a description of the protein 3D structure at a submicroscopic level for some unstable, noncrystalline and insoluble proteins. X-ray crystallography finds the X-ray final structure of a protein, which usually need refinements using theoretical protocols in order to produce a better structure. This means theoretical methods are also important in determinations of protein structures. Optimization is always needed in the computer-aided drug design, structure-based drug design, molecular dynamics, and quantum and molecular mechanics. This paper introduces some optimization algorithms used in these research fields and presents a new theoretical computational method - an improved LBFGS Quasi-Newtonian mathematical optimization method - to produce 3D structures of Prion AGAAAAGA amyloid fibrils (which are unstable, noncrystalline and insoluble), from the potential energy minimization point of view. Because the NMR or X-ray structure of the hydrophobic region AGAAAAGA of prion proteins has not yet been determined, the model constructed by this paper can be used as a reference for experimental studies on this region, and may be useful in furthering the goals of medicinal chemistry in this field

    A new version of extragradient method for variational inequality problems

    Get PDF
    AbstractIn this paper, we propose a new version of extragradient method for the variational inequality problem. The method uses a new searching direction which differs from any one in existing projection-type methods, and is of a better step-size rule. Under a certain generalized monotonicity condition, it is proved to be globally convergent

    The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

    Get PDF
    For the extended mixed linear complementarity problem EML CP , we first present the characterization of the solution set for the EMLCP. Based on this, its global error bound is also established under milder conditions. The results obtained in this paper can be taken as an extension for the classical linear complementarity problems

    Global Error Bound Estimation for the Generalized Nonlinear Complementarity Problem over a Closed Convex Cone

    Get PDF
    The global error bound estimation for the generalized nonlinear complementarity problem over a closed convex cone (GNCP) is considered. To obtain a global error bound for the GNCP, we first develop an equivalent reformulation of the problem. Based on this, a global error bound for the GNCP is established. The results obtained in this paper can be taken as an extension of previously known results

    An Improvement of Global Error Bound for the Generalized Nonlinear Complementarity Problem over a Polyhedral Cone

    Get PDF
    We consider the global error bound for the generalized nonlinear complementarity problem over a polyhedral cone (GNCP). By a new technique, we establish an easier computed global error bound for the GNCP under weaker conditions, which improves the result obtained by for GNCP

    Full genome characterization and evolutionary analysis of Banna virus isolated from Culicoides, mosquitoes and ticks in Yunnan, China

    Get PDF
    IntroductionBanna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia.MethodsCulicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing.ResultsIn this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution.ConclusionThe data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution
    corecore