Experimental X-ray crystallography, NMR (Nuclear Magnetic Resonance)
spectroscopy, dual polarization interferometry, etc are indeed very powerful
tools to determine the 3-Dimensional structure of a protein (including the
membrane protein); theoretical mathematical and physical computational
approaches can also allow us to obtain a description of the protein 3D
structure at a submicroscopic level for some unstable, noncrystalline and
insoluble proteins. X-ray crystallography finds the X-ray final structure of a
protein, which usually need refinements using theoretical protocols in order to
produce a better structure. This means theoretical methods are also important
in determinations of protein structures. Optimization is always needed in the
computer-aided drug design, structure-based drug design, molecular dynamics,
and quantum and molecular mechanics. This paper introduces some optimization
algorithms used in these research fields and presents a new theoretical
computational method - an improved LBFGS Quasi-Newtonian mathematical
optimization method - to produce 3D structures of Prion AGAAAAGA amyloid
fibrils (which are unstable, noncrystalline and insoluble), from the potential
energy minimization point of view. Because the NMR or X-ray structure of the
hydrophobic region AGAAAAGA of prion proteins has not yet been determined, the
model constructed by this paper can be used as a reference for experimental
studies on this region, and may be useful in furthering the goals of medicinal
chemistry in this field