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Abstract-In this paper, we propose a new version of extragradient method for the variational 

inequality problem. The method uses a new searching direction which differs from any one in existing 

projection-type methods, and is of a better stepsize rule. Under a certain generalized monotonicity 
condition, it is proved to be globally convergent. @ 2001 Eisevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Let C be a closed convex set in R* and F be a continuous mapping from R* to itself. The 

variational inequality problem, denoted by VI(F, C), is to find a vector z* E C such that 

(F(X*),X-X*) 20, VXEC, 

where (e, .) denotes the usual inner product in Rn. We denote the solution set of VI(F, C) 

by C*. Variational inequality problem plays a significant role in economics, engineering mechan- 

ics, mathematical programming, transportation, etc. It has received considerable attention and 

many numerical algorithms for solving it have been constructed, see e.g., [l-3]. 
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On account of projected gradient method for constrained optimization, Korpelevich [4] pro- 
posed an extragradient method with iterative scheme 

2’ = PC (xk - a# (Xc”)) , 
Xkfl = PC (Xk - CYkF (2”))) 

where PC(.) is an orthogonal projection onto C, and @ > 0 is step-size. But its convergence 
requires Lipschitz continuity of F. When F is not Lipschitz continuous or the Lipschitz constant 
is not known, the extragradient method requires an Armijo-type linesearch procedure to obtain 
step-size with a new projection needed for each trial point (see e.g., [5-lo]), and this can be very 
computationally expensive. To overcome this defect, Iusem and Svaiter [ll] proposed a modified 
extragradient method which requires only one projection to obtain stepsize ck!k. The condition 
under which global convergence is guaranteed is not enhanced. Solodov and Svaiter [12] gave 
an improvement of such a method by modifying the projection region. They also reported an 
encouraging computational experience. Recently, the authors [13] showed an interesting fact that 
the projection-type method in [12] has the same searching direction as the modified extragradient 
method in [11], but it uses a better step-size rule. 

In this paper, we propose a new version of extragradient method for the solution of problem 
VI(F, C). The searching direction in this method is a combination of the projection residue and 
the modified extra-gradient direction in [l&12], and differs from any one in existing projection- 
type methods (such as [14-B]). The step-size in this method is chosen so that the distance 
between the new iterative point and the solution set has a larger decrease. In Section 3, we state 
our new method and prove that under a weaker condition than the monotonicity, the new method 
is globally convergent. 

2. PRELIMINARIES 

Let R be a subset in Rn, projection from x E R* onto R is defined by 

Pa(x) = argmin{)(y - 211 1 y E Q}, 

where I( . (I is &norm in R”. The projection operator has been extensively studied, and we here 
list some properties of it. 

LEMMA 2.1. Let fl be a nonempty closed convex subset in Rn, then for any x, y E Rn and z E il, 

(1) (PSI(x) - z, z - Pa(x)) 2 0; 

(2) (P&c) - PQ(Y)> z - Y) 2 0; 
(3) IP&) - RdY)Il 5 lb - v/II; 
(4) IINX) - 412 I IIT - 412 - IIRdx) - 412. 

LEMMA 2.2. Let R be a nonempty closed convex subset in R”. For any x, d E Rn and a > 0, 

define z(a) = Pa(a: + ad). Then (d, x - x(a)) is nonincreasing for Q > 0. 

The following property was proved in [19]. 

LEMMA 2.3. Let il be a nonempty closed convex subset in Rn. For any x E R, d E R”, and (Y >_ 0, 

define 

Q(a) = min { )Jy - x*- adl12 ) y E 52) . 

Then $‘(a) = 2(d, x + cud - x(a)). 

Throughout the paper, we assume that 

(Al) C* is nonempty; 
(AZ) for each x* E C*, (F(x),x - x*) 2 0, Vx E C. 
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It is easy to see that when F is monotone or pseudomonotone, (As) holds. So, this is a weaker 

assumption. 

For z E C and (Y > 0, define r(z, Q) = [z - Pc(s - aF(z))]/a, and r(z) = r(z, 1). They are 

called the scaled projection residue and the projection residue for VI(F, C), respectively. We also 

use the following well-known result. 

LEMMA 2.4. For VI(F,C), x* E C* if and only if r(z*, a) = 0 for some Q > 0. 

3. ALGORITHMS AND CONVERGENCE 

In this section, we will give two modified extragradient algorithms for solving the variational 

inequality problem VI(F, C). They are the same in the sense that the same iterative sequence is 

generated but the second algorithm is easier to implement than the first one. Their convergence 

properties are developed under the Assumptions (Ai) and (As). 

ALGORITHM NVE- 1. 

Initial Step: Select any 0, y E (0, l), z” E C. k = 0. 

Iterative Step: For xk E C, define 

zk = PC (cc” - F (2’)) . 

If r(zk) = 0, then stop. Otherwise, compute 

yk = (1 - qk)zk + r)k& 

where qk = rmk with mk being the smallest nonnegative integer m satisfying 

(F (2”) - F (xk - ymr (2”)) ,r (x”)) 2 +-(~k>i12. 

Let 

dk = _ ( r (2”) + F (yl”) ) 1 

+ "'"k'~r~k~l~k~~xk)+~'Yk))~ 

Select ok 2 o$ such that 

(r (Xc”) , r (X’) - F (xc”) + F (y”)) + (zk - Zk(cXk), dk) = 0, 

(3.1) 

(3.2) 

where xk(cr) := Pc(x” + a&). Let 

zk+’ = PC (xc” + a,&). 

In order to get a better understanding of Algorithm NVE-1, we give the following analysis. 

First, we analyze the step-size rule given in (3.1). If zk is not a solution of VI(F,C), then 

r(x”) # 0. By continuity of F, v]E satisfying (3.1) must exist. From (3.1) and (F(~“),r(zk)) > 

(Jr(xk)(12, we know that 

(F (Y") , r (xk>> 2 (F (xc”> ,r (xk)) - CJ l(r (x”) )I2 
2 (1 - q) Ilr (2”) 112, (3.3) 

which shows that the step-size rule (3.1) is related closely to the ones in [11,12]. Also, if F(x) is 
Lipschitz continuous with Lipschitz constant L > 0 on C, then nk for all k 3 1 have a positive 

bound from below. In fact, by (3.1) we have for any k 2 1, if 7& # 1, 

5~ [Ir(x”)l[‘> (F(x*) -F (xk - (5) r(xk)) ,rbk)) > allr(xk)l12, 

i.e., vh _> (ay)/L > 0. 
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Second, we observe the searching direction dk. We recall the searching directions that appear 
in existing projection-type methods for solving problem VI(F, C). They are 

(i) the direction -okF(zk) by Korpelevich [4]; ’ 
(ii) the direction -{zk -2”-ak[F(z”)-F(Z’)]} by He [15], Solodov and Tseng [17], Sun [lo], 

and Tseng [18]; 
(iii) the direction -{z” - bk + F(Z”)} by Noor [16]; 
(iv) the direction -F(y”) by Iusem and Svaiter [ll] and Solodov and Svaiter [12]. 

In our algorithm, the searching direction is taken as 

( F b”> - r(xk)+r ) =-” (x:“- 
rlrc Yk+Fbk))* 

It is a combination of the projection residue and the modified extra-gradient direction in [11,12], 
and differs from any one of the above four directions. (Note that yk is not different from zk.) 
I wonder whether other searching direction could be generated if we combine some searching 
directions which have good behavior. This is a topic for further research. 

Finally, we discuss the feasibility of the step-size rule given in (3.2). From the iterative proce 
dure of Algorithm NVEl, we know that zk,yk, xk E C, for all k. For any z* E C*, by (As) and, 
Lemma 2.1, we have 

(F(ac”),sk-x*)20 

and 
(zk - F (xk) - zk, zk - x*) 2 0. 

Adding ‘the above two inequalities, we obtain 

(xc” - F (x”) - zk, zk - zk) + (2” - zk,xk - CT*) > 0. 

Since 

xk _ x*, !!?i!$ )( F b”> = xk-yk+yk_x*,_ 
% 

_> F b”> xk -yk,- 
'?k 

= (xk -zk,F(yk)), 

we have 

( 
xk-x*,r(xk)+~F(yk))=(~k-x*,~(xX))+(zk-z*,~F(yk)) 

~(z~-F(x~)-z~,x~-z~)+(x~-z~,F(~~)) (3.4) 

= (T (x”) ,r (x”) + F (y”) - F (x”)) . 

For a 4 0, by Lemma 2.1 and (3.4), we have 

IjX”(a) - x*/j2 = I/j% (x” + adk) - x*/l2 

~j(Xk-x*+adk~~2-~(rxk-Xk(~)+adk(~2 

= l/x” - xf112 + a211dkl(2 + 2cu(dk,xk -x*) - I)xk - xk(a) + adk/12 

I jlxk - x*11’ + Q211dk1)2 - 2a(r (xc”) - F (z”) + F (y”) ,T (zk)) 

- jlxk - x”(a) + a &)I2 . 
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Denote 

&c(a) = -a211dk1/2 + 2a (T (xk) ,T (xk) - F (2”) + F (y”)) + jlzk -z!(a) + adk([2, (3.5) 

then 

By Lemma 2.3, we have 

(3.6) 

&&) = 2 (r (2’) ,+k) - F (2”) + F (yk)) + 2 (2’ -z”(a),&). 

To show that the step-size rule for CKk is implementable, it is sufficient to show that there ex- 

iStS Cyk 2 CX~ such that $!$(cQ) = 0. SinCe 

(xkb) - xk,dk) 5 ~lldkl12, 

SO if Q < a: = ((r(zk),r(zk) - F(z’) + F(yk)))/(lldk112), then $‘,(a) > 0. That is to say, the 
smallest nonnegative solution to the equation $$(cy) = 0, say &, satisfiks & 2 a:. 

Consider the optimization problem 

m={4k(a) 1 Q 2 0). 

Since &(a) is nonincreasing for a > 0 by Lemma 2.2, and for xk 4 C’, 

&(O) = 2 (r (zk) ,T- (xk) - F (xk) + F (yk)) L 2(1 - fl) 11~ (zk) iI2 > 0, 

we know that if the equation a; = 0 is solvable, then every solution to this equation is a solu- 

tion to the problem max {&(a) I (Y > 0). The following lemma shows that the equation &(a) = 0 

is solvable, which implies that f& in Algorithm NVEl is well defined. 

LEMMA 3.1. For function &(a) defined by (3.51, the equation $~(cx) = 0 is solvable. 

PROOF. Define the hyperplane 

For zk $ C*, we have 

(T (x’) ,T (xk) - F (zk) + F (y”)) 2 (1 - CJ) Ilr (xc”) )I2 > 0 

and from (3.3), we obtain 

(r (xk) , -I- (x’) - F (xk) + F (y”)) + (T (xk) , dk) 

=(~(xk),~(~k)-F(~k)+F(li*))t(-~(~k),~(~k)+~) 

= 
F (Yk) r cxk> Y -F (xk) + F (yk) I rlk 

= - (r (xk) , F (z”)) - (I ,2 F (yt)> 

5 - Ilr (xk) II2 - 2 (1 - a) Ilr (xk) II2 

I - IJT (x”)II” < 0, 
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which implies that zk E {z E R” / (r(z”),r(z”) - F(z”) + F(yk)) + (z” - z,dk) > 0) and 

zk E {z E Rn 1 (r(zk),r(zk) - F(z”) + F(y”)) + (cc” - 2, dk) 5 0). From the convexity of C, we 

know that Hk rl C # 4. It is easy to Verify that lck + aidk E Hk and 

~k+(Yd~E{zERn~(r.(~k),~(~k)-~(Zk)+~(yk))+(Zk-~,dk)<O}, Va > c$ 

Obviously, dkl& 

Let P be any point in Cn{a: E R” 1 (r(zk), ~$2~) - F(z”) +F(y”)) + (x” -z,dk) 2 0}, Q = zk, 
and C(a) = xk +a dl, where Q > 0. In the triangle composed by points O(a), Q, and P, the inner 

corner at points P, Q are denoted by @p and PQ, respectively. By the knowledge of geometry, we 

know that when cr > CE~ is sufficiently large, then ,Op < @Q, and so IlO(cr)Qll < IlO(a)Pll. From 

the arbitrariness of P E C fl {z E R” 1 (r(zk), r(zk) - F(xk) + F(y”)) + (xk - 2, &) 2 0) and by 

the definition of orthogonal projection, there exists cy(, > cyi such that 

PC (zk .+ ak dk) E {z E Rn 1 (T (xc”) , r (Zk) - F (xk) + F (y”)) + (zk - z, dk) 5 0} . 

On the other hand, 

PC (x” + 0. dk) = z~E{~ER~~(~(~~),+“)-F(~~)+F(~~))+(z~-~,~~)>O}. 

By continuity of orthogonal projection operator, we know that there exists Crk E (O,&) such 

that z’((uk) = Pc(zk +ak dk) E HkI?C, which implies that the equation $;(a) = 0 is solvable. I 

Based on the above analysis, we know that Algorithm NW-1 is implementable. Next, we state 

the convergence result and its proof. 

THEOREM 3.1. Suppose (Al) and (AZ) hold. If the sequence {x”} generated by Algorithm 

NW-1 is intinite, then {xk} globally converges to a solution x* of Vl(F, C). 

PROOF. Since (Yk is a solution of max{&(cr) ) Q 2 0}, by (3.6), we know that 

= llxk - cc* II2 - 2c& (T (xk) , r (xk) - F (2”) + F (y”)) 

+ (&)’ [[&(I2 - llxk - x”(&) - +kl12 

5 llzk - x*1j2 - 24 (T (xc”) ,r (x’) - F (x:“) -t F (yk)> + (a;)” ljdk112 

= (j5k _ ,412 _ b” (Ick) 7’ hk) id;,?) + F (yk)j2 

. 

I l(xk __*jl2_ (1-~M~k)l14_ 
lkhii2 

So {x”} is a Fej& sequence with respect to C*, and {z”} is a bounded sequence, so are {y”}, 

G”), P’(x”))> WY”% respectively. There exist infinite subsets Nl and A5 in (0, 1,2, . . . } such 

that 

If lim&Nl,]e+m Ilr(z”)ll = 0, by Lemma 2.4, we know that any cluster Z of {xk : k E iVl} is a 

solution to VI(F, C). Since {x”} is a Fej& sequence with respect to C*, if we take x* = 2, then 

we know that {x”} globally converges to 2. Otherwise, by (3.1) we know that 
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Therefore, 

This plus limkENz,k_,W qk/y = 0, yield limrceN,,k+oo 11r(z”)1/ = 0. Similar discussion leads to 

that any cluster of {z le : k E A$} is a solution to VI(F, C). Replacing z* by this cluster point 

yields the desired result. I 

Obviously, (Yk given in Algorithm NVE-1 is a long step (by Qk 2 a:) and guarantees that the 

distance between the new iterative point and the solution set has a larger decrease. However, 

in practice, if C does not possess any special structure, it is difficult to give an explicit formula 

of ak: That is to say, we need to find a Simple way to Compute the projection pc(z” + Cyk dk). 

The following lemma gives an answer to this question. 

LEMMA 3.2. For Crk 1 c$ determined by (3.2), z”(@) = Pc”H~ (x” + a&). 

PROOF. Denote Tk(cri) = Pc~H~ (zk + ai dk). It can easily be verified that 

PHk (Zk) = Xk + rX; dk, 

i.e., (z” + CX: dk) E Hk. FkOIII xk(ak) E Hk, we know that 

Z’(ak) = &HI, (xk + ak dk) . 

Since 

(Zk + (Yk dk) - (Zk + ~2; dk) = (ak - Ct’;) dk_i_Hk, 

by Pythagoras Theorem, we have 

11X” + cy; dk - i ((Y:) ]I2 + 11 ((IIk - CX;) dk/12 = 112’ + Crl, dk - Zk (a;) 112, 

jlZk + a; d,, - zk(Crk)l12 + j[(ak - a;) dk1j2 = /Zk + (Y/c dk - Xk(ak)112. 

(3.7) 

(3.8) 

From (3.7) and (3.8), we have 

llzk +a;dk -?Ek (c$)/” - llzk +a:dk -CEk((Yk)j12 

=llZk+cu,dk-i(~~)112-llZk+akdk-2k(ak)l12. 
w 

By the definition of orthogonal projection, we know that 

(3.10) 

and 

IIZk + 0’; dk - ~“(cXk)ll 2 lllCk + cr;dk - zk (a;) 11 . (3.11) 

Combining (3.9)-(3.11), and by the uniqueness of orthogonal projection, the desired result is 

obtained. I 

Thus, Algorithm NVEl can be rewritten as the following form. 

ALGORITHM NVE-2. 

Iterative Step: For zk E c, define 

zk = PC (x” - F (x”)) . 

If r(z”) = 0, then stop. Otherwise, compute 

y” = (1 - qk)zk + vkZk, 
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where qk = ym* with mk being the smallest nonnegative integer m satisfying 

(F (zk) - F (xk - ymr (xc”)) ,r (z’)) < 0 \(r (z:“) (j2. 

Let 

xk+r = &-,Hk xk + a; dk) 
( ’ 

where 

dk = - 

a: = (r (xc”) 7 r (xk> - F (xk> + F bk) >. 
tbd2 

It is easy to see that Algorithms NVEl and NVE-2 share the same convergence result. 

THEOREM 3.2. Suppose that (Al) and (As) hold. If the sequence {xk} generated by Algorithm 

NVE-2 is infinite, then it converges to a solution of Vl(F, C). 

APPENDIX 

PRELIMINARY NUMERICAL EXPERIMENTS 

To give some insight into the behavior of our new algorithm, we implemented it in MATLAB 
to solve linear constrained variational inequality problems (by solving the quadratic program to 
perform the projection). We compared the performance of this implementation with analogous 
implementations of the methods described in [7-10,12,17]. By contrast, our algorithm seems to 
perform better than the alternatives in many cases. In Algorithm NVE-2, two projections onto C 
and C II Hk are needed at each iteration, respectively. To decrease the computation cost of initial 
point in projecting, in the following examples, we use the following iterative procedure which 
needs two projections onto C: 

Xk+’ = PC (Xk - ak dk) , 

where p is a positive constant. We select u = 0.4 and y = 0.8. 
Though our experience is limited in scope, it suggests that our method (NVE method for short) 

is a valuable alternative to the extra-gradient methods in [7--10,12,17]. We describe the detailed 
tests below. 

EXAMPLE 1. This example was considered in [8,9], where F(x) = Da: + c, D is a nonsymmetric 
matrix of the form 

4 -2 
1 4 -2 

1 4 -2 

1 1 

. . . 7 
. . . 

. 4 -2 

1 4 

c = (-1, -1,. . . , -l)T is a vector. The feasible set C = [Z, u], where 1 = (O,O, . . . , O)T and 
u = (l,l,..., l)T. We choose x0 = (0, 0, . . . , O)T, take ]]r(xk)]12 I nlO-r4 as the termination 
criterion, where n is the dimension of the problem. The numerical results of Algorithm D in [9] 
and NVE algorithm are given in Table 1. 
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Table 1. 

EXAMPLE 2. This example was considered in [8], where 

F(X) = Fl(X) + F2(X), 

JI(X) = (h(X), fi(X), . . .7 ha(X)) 
T 

, 

Fz(x) = Dx + c, 

fi(Z) = x:-l+ x: + xi-1xi + xixi+1, i=1,2 )...) n, 

x0 = x,+1 = 0, 

and D and c are the same as those in Example 1, respectively. The feasible set C = R;. We 

choose x0 = (O,O, . . . , O)T and take ]]r(~“)[]~ 5 n10-r4 as the termination criterion, where n is 
the dimension of the problem. The numerical results of Algorithm PC in [8] and NVE algorithm 
are given in Table 2. 

Table 2. 

Number of iterations (inner iterations) 

Algorithm 1 n=lO I n=20 I n=50 I n=lOO 

EXAMPLE 3. The Kojima-Shindo Nonlinear Complements&y problem (NCP) (with n = 4) was 

considered in [20], where the function F(x) is defined by . 

F(Xl,X2,X3,X4) = 

3x; + 2x122 f 2x; + x3 + 3x4 - 6 

2Xj+Xl+X;+1oX3+.2X4-2 

3x: + x1X2 + 2~; + 2x3 + 9x4 - 9 

xi + 32: + 2x3 + 3x4 - 3 

Let the feasible set be the simplex 

For all methods, x0 = (1,1,&l) T, the termination criterion is ]]r(x)]] 5 10m4. The numerical 
results (iterative number) of extra-gradient algorithms in [7,9,12,17] and NVE algorithm are given 
in Table 3. 

Table 3. 

NVE (300 <_ p 5 570) 

5 

Extra. in [12] 

7 

Extra. in [17] 

38 

Extra. in [7] 

16 

Extra. in [9] 

78 
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The following example is a nonlinear complementarity problem whose defining function is taken 
from Nash equilibrium problem. 

EXAMPLE 4. The defining function F : R”+ -+ Rn is of the form 

Fi(q> = ci(qi) -P 

fori=1,2 ,..., n,where 

Pi 
C&i) = wli + 1 + Pi 2 

L~l/Piq~‘llPi 
2 , p(Q) = 50001/7Q--‘/7, 

with Q = ~~zl qi. The data cri, Li, ,$, and y are positive scalars which are taken from [21] 

Table 4. 

Firm i ci Li & 

1 10.0 5.0 1.2 

2 8.0 5.0 1.1 

3 6.0 5.0 1.0 

4 4.0 5.0 .9 

5 2.0 5.0 .8 

We take n = 5, y = 1.1. The termination criterion is llr(~)11~ 5 10e8. The numerical result 
(iterative number) of NVE algorithm is given in Table 5. 

Table 5. 

initial point 1 p=2 1 p=2.5 1 p=3 1 p=3.5 1 p=4 

~10.10.10.10.10~T I 19 I 14 I 15 I 31 I 49 

Il. 1. 1. 1. l)T I 20 I 14 I 10 I 15 I 45 

The numerical results show that although the optimal step-size (ok is not used in Algo- 
rithm NVE, the NVE type projection method has good behavior if a suitable constant p is 
selected, which implies that dk is a good direction. From Section 3, we know that the optimal 
step-size (Yk is used in Algorithm NVE-1 or NVEZ, it should also have good behavior. 
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