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Abstract—In this paper, we propose a new version of extragradient method for the variational
inequality problem. The method uses a new searching direction which differs from any one in existing
projection-type methods, and is of a better step-size rule. Under a certain generalized monotonicity
condition, it is proved to be globally convergent. © 2001 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Let C be a closed convex set in R™ and F' be a continuous mapping from R" to itself. The
variational inequality problem, denoted by VI(F,C), is to find a vector z* € C such that

(F(z*)y,x—z*) 20, VzeC,

where (-,-) denotes the usual inner product in R®. We denote the solution set of VI(F,C)
by C*. Variational inequality problem plays a significant role in economics, engineering mechan-
ics, mathematical programming, transportation, etc. It has received considerable attention and
many numerical algorithms for solving it have been constructed, see e.g., [1-3].
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On account of projected gradient method for constrained optimization, Korpelevich [4] pro-
posed an extragradient method with iterative scheme

* = Ps (xk — apF (a:k)) ,
2"t = Po (2 — an F (7)),

where Pc(-) is an orthogonal projection onto C, and oy > 0 is step-size. But its convergence
requires Lipschitz continuity of F. When F' is not Lipschitz continuous or the Lipschitz constant
is not known, the extragradient method requires an Armijo-type line-search procedure to obtain
step-size with a new projection needed for each trial point (see e.g., [5-10]), and this can be very
computationally expensive. To overcome this defect, Iusem and Svaiter [11] proposed a modified
extragradient method which requires only one projection to obtain step-size o;. The condition
under which global convergence is guaranteed is not enhanced. Solodov and Svaiter [12] gave
an improvement of such a method by modifying the projection region. They also reported an
encouraging computational experience. Recently, the authors [13] showed an interesting fact that
the projection-type method in [12] has the same searching direction as the modified extragradient
method in [11], but it uses a better step-size rule.

In this paper, we propose a new version of extragradient method for the solution of problem
VI(F,C). The searching direction in this method is a combination of the projection residue and
the modified extra-gradient direction in [11,12], and differs from any one in existing projection-
type methods (such as [14-18}). The step-size in this method is chosen so that the distance
between the new iterative point and the solution set has a larger decrease. In Section 3, we state
our new method and prove that under a weaker condition than the monotonicity, the new method
is globally convergent. '

2. PRELIMINARIES
Let €2 be a subset in R?, projection from = € R™ onto {2 is defined by

Po(z) = argmin {|ly — z|| | y € 0},

where || - || is l;-norm in R™. The projection operator has been extensively studied, and we here
list some properties of it.

LEMMA 2.1. Let Q be a nonempty closed convex subset in R", then for any z,y € R™ and z € ,
(1) (Pa(z) —x,2 — Pa(z)) 2 0;
(2) (Pa(z) - Pa(y)z—y) 2 0;
() Pa(x) — Pa)ll < llz - yli;
4) |1Pa(@) — 2|? < ||lz — 2% - | Pa(z) — =|1%.
LEMMA 2.2. Let £} be a nonempty closed convex subset in R™. For any z,d € R™ and o > 0,
define z(a) = Po(z + ad). Then (d,z — z(e)) is nonincreasing for o > 0.
The following property was proved in [19)].
LEMMA 2.3. Let (2 be a nonempty closed convex subset in R*. Foranyx € Q,d € R", anda > 0,
define ,
Y(e) = min {|ly — z— ad|)® | y € Q}.
Then ¢¥'{a) = 2(d,z + ad — z(a)).
Throughout the paper, we assume that

(A1) C* is nonempty;
(A2) for each z* € C*, (F(2),z —2*) 2 0,Vz e C.
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It is easy to see that when F' is monotone or pseudo-monotone, (Az) holds. So, this is a weaker
assumption.

For z € C and a > 0, define r(z,a) = [z — Po(z — aF(z))]/a, and r(z) = r(z,1). They are
called the scaled projection residue and the projection residue for VI(F, C), respectively. We also
use the following well-known result.

LEMMA 2.4. For VI(F,C), z* € C* if and only if r(z*,a) = 0 for some a > 0.

3. ALGORITHMS AND CONVERGENCE

In this section, we will give two modified extragradient algorithms for solving the variational
inequality problem VI(F,C). They are the same in the sense that the same iterative sequence is
generated but the second algorithm is easier to implement than the first one. Their convergence
properties are developed under the Assumptions (A;) and (Aj).

ALGORITHM NVE-1.
Initial Step: Select any o,7v € (0,1), z2° € C. k= 0.
Tterative Step: For z* € C, define

2¥ = Po (zF -~ F (2%)).
If r(x"j = 0, then stop. Otherwise, compute
v* = (1—m)e* + m¥,
where 7, = Y™+ with my being the smallest nonnegative integer m satisfying
(F (z¥) = F (2" —y™r (a¥)) ,7 (z%)) < o|r(="))2 (3.1)
Let

Nk

{r(h)r(=%) —F (&) + F (4"))
a2 ‘

dk:_(r(x")+F(yk))’

aj =

Select a > o such that
(r(@*),r(@") = F (%) + F (4")) + (a* - 2*(ew). di) =0, (32)
where z*(a) := Po(z* + ady). Let
! = Po (2% + axdy) .

In order to get a better understanding of Algorithm NVE-1, we give the following analysis.
First, we analyze the step-size rule given in (3.1). If z* is not a solution of VI(F,C), then
r(z*) # 0. By continuity of F, n satisfying (3.1) must exist. From (3.1) and (F(z),r(z*)) >
lr(z*)||?, we know that
2
(F(y").r (&¥) 2 (F (z*),r (%)) = o ||Ir (=)
2
> 1 ~o)|r =),

which shows that the step-size rule (3.1) is related closely to the ones in [11,12]. Also, if F(z) is
Lipschitz continuous with Lipschitz constant L > 0 on C, then 7, for all k¥ > 1 have a positive
bound from below. In fact, by (3.1) we have for any k > 1, if ny # 1,

Znelr @ 2 (F &) - F (= (Z)r @) rah) > ollr @)

ie, e = (ov)/L > 0.

(3.3)
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Second, we observe the searching direction di. We recall the searching directions that appear
in existing projection-type methods for solving problem VI(F,C). They are
(i) the direction —ay F(Z*) by Korpelevich [4];’
(i) the direction —{z* —Z* — ai[F(z*) ~ F(z*)]} by He [15], Solodov and Tseng [17], Sun [10],
and Tseng [18];

(iii) the direction —{z* — ¥ + F(z*)} by Noor [16};

(iv) the direction —F(y*) by Iusem and Svaiter [11] and Solodov and Svaiter [12].

In our algorithm, the searching direction is taken as

(e EE) L @,

Mk N

It is a combination of the projection residue and the modified extra-gradient direction in {11,12],
and differs from any one of the above four directions. (Note that y* is not different from z*.)
I wonder whether other searching direction could be generated if we combine some searching
directions which have good behavior. This is a topic for further research.

Finally, we discuss the feasibility of the step-size rule given in (3.2). From the iterative proce-
dure of Algorithm NVE-1, we know that z*,y*, 2¥ € C, for all k. For any z* € C*, by (A;) and
Lemma 2.1, we have '

' ’ <F(.7:k),:1:k—a:*>_>_0

and
(xk - F (a:k) ~zF, 2k - z*) > 0.

Adding the above two inequalities, we obtain

: (z* = F (z%) — 2%, 2% — &%) + (z* — 2%, 2% — 2*) > 0.

Since
k k
<$k__x*’F(y )> = <xk—yk+yk—x*,F(y )>
: Tk Mk
k .
2 <xk — yk’ i(y__).>
Nk
= (& - 4,7 (),
we.have

<:1:’° —~z*, 7 (z*) + ;;;F (yk)> = (z* —z*,r (zF)) + <:z:’° —z*, ;lk- F (yk)>
> (g — F (z%) — 2F,2F — 2F) + (2% - 2%, F (%)) (34)
= (r(z").r (@*) + F (4*) - F (z")) .
For a > 0, by Lemma 2.1 and (3.4), we have

@) ~ " = o (a* + ads) - o
< ||z* - 2* + adi|” - ||z* — 2*(@) + |
= ||l=* - z*||2 + 02|k || + 2a {dk, z* — z*) — ||z* - z*(a) + adk“2
< ||=* - :c*”2 + o?|ldi|)? - 2a(r (z¥) — F (z*) + F (4*) , 7 (z*))

= |ja* — z*(a) + adk”2 .
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Denote
de(a) = —a?||di|? + 20 (7 (zF) ,r (aF) — F (z*) + F (4*)) + ||=* — z*(a) + adk”2 ,  (3.5)

then ) )
||:z:k(a) - :z*|| < ||:1:’c - z*” — dr(a). (3.6)

By Lemma 2.3, we have
drla) =2 (r (a:k) ,r‘(a:k) -F (:ck) +F (yk)> + 2 (a:k - xk(a),dk> .

To show that the step-size rule for aj is implementable, it is sufficient to show that there ex-
ists a > o}, such that ¢} (ax) = 0. Since

(z*(a) — ¥, di) < alldi|?,

so if & < af = ((r(z*),r(z*) — F(z¥) + F(y*)))/(||d||?), then ¢ (a) > 0. That is to say, the
smallest nonnegative solution to the equation ¢} (a) = 0, say @j, satisfies @ > of.
Consider the optimization problem

max {¢r(c) | & > 0}.

Since ¢} (c) is nonincreasing for & > 0 by Lemma 2.2, and for z* ¢ C*,
$1(0) =2(r (%), (e*) = F (%) + F (%)) 2 201 - o) | (%) " > o,

we know that if the equation ¢} (a) = 0 is solvable, then every solution to this equation is a solu-
tion to the problem max {¢x () | @ > 0}. The following lemma shows that the equation ¢} (a) = 0
is solvable, which implies that oy in Algorithm NVE-1 is well defined.

LEMMA 3.1. For function ¢y (o) defined by (3.5), the equation ¢},(a) = 0 is solvable.
PROOF. Define the hyperplane

Hy={z e R"|{r (z*),r (aF) = F (z*) + F (%)) + (2* —x,di) =0}.
For z* ¢ C*, we have
(r(@).r (@) ~F (&) + F (%) 2 1 -0) |Ir (*)[* >0
and from (3.3), we obtain
(r(=%),r (%) = F (%) + F (%)) + (r (z*) , i)

=0%ﬁxruﬁ—F@%+F@ﬂw+<4@ﬂﬂ«wy+£@3>

M
~(r@)-r e e - T
= —(r(c"),F (a*)) ~ <r’(:z:k) , l;—k"k F (yk)>

<-lr @) - 1= o) r @)

<-|Ir @) <o,
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Which implies that z*¥ € {z € R" | (r(z*),r(z¥) — F(zF) + F(y*)) + (zF
Cf'rC Rnl('r('rk\ r('rk\—P('rk\-l—F’(ﬂk\\-l—(v‘ - z,d) < 0}. From the c
know that Hi N C’ # ¢. It is easy to venfy that z* + aldy € Hy, and

z* + ady € {z € R* | (r (z¥) ,r (z*) — F (a*) + F (%)) + (z* — z,d) < 0}, Ya > af.

Obviously, di 1 H.
Let P be any point in CN{z € R™ | {r(z*), r(z*) — F(z*) + F(y*)) + (z* —z,dx) > 0}, @ = 2¥,

and Ofa) = zF Lo d. where o > 0. In the triancle composed by noints Ofa). 0. and P. the inner
[« 980 3 V\ul T uwn YW LIVLIU L o~ Us 41 Vil IJLIUAALELU UUALLPUQUU U_y yvu..unu V\u}, V, ALl 1 b3 LLILT 1111151

corner at points P, ) are denoted by Bp and (g, respectively. By the knowledge of geometry, we
know that when o > of is sufficiently large, then 8p < Bg, and so ||O(a)Q}| < [|O(a)P}|. From
the arbitrariness of P € CN{z € R™ | {r(z*),r(z*) —~ F(z*) + F(¥*)) + (z* — x,d)) > 0} and by
the definition of orthogonal projection, there exists a}, > aj such that

Pc (2 + aj di) € {z € R™ | (r (z) ,r (z*) — F (z*) + F (4*)) + (2* ~ z,di) < 0}.
On the other hand, ‘
Po(zF +0-dy) =2 € {z € R*| (r (zF) ,r (a¥) - F (%) + F (4*)) + (2* — 2,di) > 0}.

By continuity of orthogonal projection operator, we know that there exists ox € (0,a}) such
that z* (o) = Po(z* + oy di) € HpNC, which implies that the equation ¢4 (a) = 0 is solvable.

Based on the above analysis, we know that Algorithm NVE-1 is implementable. Next, we state
the convergence result and its proof.

THEOREM 3.1. Suppose (A;) and (As) hold. If the sequence {z*} generated by Algorithm
NVE-1 is infinite, then {z*} globally converges to a solution =* of VI(F,C).

PROOF. Since ay is a solution of max {¢x(a) | & > 0}, by (3.6), we know that
e P
<|lzF - *H — ¢ (al)
Il r \TKJ

= [}o* ~ =" I* — 20 (r (%) 7 (a¥) ~ F (%) + F (4*))

+ (o) g2 - ||=* — 2*(o}) — afdi]|”

< [lx* 7'*”2 —2al (r (2% . r (%) -~ F (£F) + F (vF) + (0.1\2 IR
— il H LB NN 7/ \ 7 / \v J/ ATk TR
k k k kY \2
et @) @) - F ) +F )
nar na
a L2
o 114
<% — 2% - (1~o)|r ('7" )
— H ”dkllz
So {z*} .s a Fejér sequence with respect to C*, and {z*} is a bounded sequence, so are {y*},
{z*}, {F(z*)}, {F(¥*)}, respectively. There exist infinite subsets N; and N, in {0,1,2,...} suc
that :
Ii M=o I =0.
wen B M@ =0 or o Jim

If limge Ny k—oo |IT(zF)|| = O, by Lemma 2.4, we know that any cluster Z of {z* : k € N1} is a
solution to VI(F, C) Since {z*} is a Fejér sequence with respect to C*, if we take z* = &, then

/o 1N

we know that tIL‘ j’ glooauy converges to . U'EIleI'Wlse, Dy (3.1) we know that

\ ﬁ/ k—/ﬁ\r’xk\r’x
TR T\

k

™

\r (z
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Therefore,

| AL AN 0 R o

”F(m Fla*=(3)r@))|>elr @, forke
fo =) FE RN TURIR TN I Aeld li [TV AN TS WY « LONUIES PRI TN S JRU BRI
Lnis plus liMgeN, k—oo Tk/7Y = 0, yield li Mke N, k—oo |[T\T" jj| = U. Slmual QiSCussion ieadas (o
that any cluster of {z* : k € Ny} is a solution to VI(F,C). Replacing z* by this cluster point
yields the desired result. =

Obviously, ay, given in Algonthm NVE-1 is a long step (by ax > of) and guarantees that the

ive noint and the solution set hae a larcer dacrease Howevaer

digtanca hotwaen the naw a
A IO aLlve point alld Lne SCiullenl 8€L Nas 4 :arger GeCrease. Lowever,

in practice, if C does not possess any special structure, it is difficult to give an explicit formula
of a. That is to say, we need to find a simple way to compute the projection P (z* + oy dy).
The following lemma gives an answer to this question.

T e v 0 S vl Adadasendnn
LEMMA 3.2. For ap 2 > G, acverniin

PROOF. Denote TF(a}) = Ponm, (z* + a} di). It can easily be verified
Py, (z¥) = 2% + of di,
ie., (z* + ajdx) € Hg. From z*(ax) € Hi, we know that

xk(ak) = PcﬁH,c (.’L‘k + oy, dk) .

(.’Bk + dk) - (:Ek + a,lc dk) = (ak - ak) di LHp,
by Pythagoras Theorem, we have

..k . =k (1)

L.

- N2 N A1) Nk o o k(1Y) a7
1R +agdy — T Okl T \Xke — &) k(| = ||T T Xk bk — L \Ag)|| 1)
|l=* + ot di — a:k(ak)” + ||(ox — k) @ |[2 = ||z* + o di — wk(ak)||2. (3.8)
From (3.7) and (3.8), we have
< + o di — 2 (ab)||” - ||2* + o die — 2*(aw)]||”
" 1. ¢ E Y ||2 I12 (3.9)
= ||z* + o de — F* (ag)||” — ||=* + o di — (o) |
By the definition of orthogonal projection, we know that
”:L‘k + g di — z* (ak) ” > ”.’L‘k + ok di — .’Itk(ak)” (3.10)
and
iixk +a} di, — :L'k(ak)ii > ii + ojdy — T (ak)i' . (3.11)

Combining (3.9)-(3.11), and by the uniqueness of orthogonal projection, the desired result is
obtained. 1

Thus, Algorithm NVE-1 can be rewritten as the following form.

ALGORITHM NVE-2.
Iterative Step: For z3 € C, define

= P¢ (zF — F (z%)) .
If r(z*) = 0, then stop. Otherwise, compute

F= (1 - ne)z® + ma®,
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where 7, = Y™ with my being the smallest nonnegative integer m satisfying
(F (=) = F (& =47 (a5)) v (%)) < o [Ir ()]

Let
Ftl = Ponpx (xk + a,%; dk) s

dk=—(r(:tk)+£-?(iﬁ),

_(r(@*),r(@*) - F(=*) + F(¥)

1 =
¢ lldx]?

where

It is easy to see that Algorithms NVE-1 and NVE-2 share the same convergence result.

THEOREM 3.2. Suppose that (A1) and (A2) hold. If the sequence {z*} generated by Algorithm
NVE-2 is infinite, then it converges to a solution of VI(F,C).

A

APPENDI
PRELIMINARY NUMERICAL EXPERIMENTS

To give some insight into the behavior of our new algorithm, we implemented it in MATLAB
to solve linear constrained variational inequality problems (by solving the quadratic program to
perform the projection). We compared the performance of this implementation with analogous
implementations of the methods described in [7-10,12,17]. By contrast, our algorithm seems to
perform better than the alternatives in many cases. In Algorithm NVE-2, two projections onto C
and CN H;, are needed at each iteration, respectively. To decrease the computation cost of initial

noint in nroiectine. in the followine examnles we 118e the fn"nnnhtr 1l-nrahvn nrocedurs nr}nr-h
point n prejeciing, In 1ne Ic.owlng examplcs, use vile cuowing 1ierailve procequre waicn

needs two projections onto C:

b ¥

1 = Po (zF — ap di)

N C]
ak=p(1_ ) ”d ”2 ’

where p is a positive constant. We select 0 = 0.4 and v = 0.8.
Though our experience is limited in scope, it suggests that our method (NVE method for short)
alla +1 TR A Y 7 1N 1917 AT~ A. shon Andaild
lb a VMUUUIU l:ubtuuauvc lJU lAl.lU c}sua-s;aulcuu LU.CULIUUD J.u ll 1U,1layl lJ yv& GEsCrive leU ucuaucu

tests below.

EXAMPLE 1. This example was considered in [8,9], where F(z) = Dz +¢, D nonsymmetric
matrix of the form

(4 -2 \

1 4 -2
l 1 4 =2 l
* y

| 4 -2

\ 1 4 /
c = (-1,-1,. —1) is a ‘vector The feasible set C = lb ul, where { = {G,0,. ,O)T and
u=(1,1,.. l)T. We choose z° = (0, ,0)7, take ||r(z*)||? < n10~!* as the termination

criterion, where n is the dimension of the problem‘ The numerical results of Algorithm D in [9]
and NVE algorithm are given in Table 1.
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Table 1.
Number of iterations (inner iterations)
Algorithm n=10 n =50 n=100 | n=200 | n=>500
Alg. D 18(9) | 19(10) | 15(4) 16 (6) 13 (2)
NVE (p = 2) 24 25 25 25 25
NVE (p=3) 13 13 i3 i3 i3
NVE (p =4) 18 18 17 16 16
ExAMPLE 2. This example was considered in [8], where
F(z) = Fi(z) + F3(),
AR VN IR IR s 7 T
H(z) = (), J2(Z), .. -, JnlZ))
Fy(z) = Dz +c,
f,(:L‘) =xf_1+x?+z,~_1xi+zix,~+1, 1=12,...,n,
Zo = ZTn4+1 =0,
and D and c are the same as those in Example 1, respectively. The feasible set C = R}. We

choose 2% = (0,0,...,0)7 and take [r(z*)||? < n10~** as the termination criterion, where n is
the dimension of the problem. The numerical results of Algorithm PC in [8] and NVE algorithm

ara givan in Tahkla 9
are given il 1301t 4.

Table 2.

Number of iterations (inner iterations)
Algorithm n =10 n =20 n = 50 n = 100
Alg. PC 14 (13) 14 (13) 13 (12) 13 (11)
NVE (p=2) 21 20 20 20
NVE (p = 3) 12 12 12 11
NUD /.. _ A 10 10 10 19
NV Iy \IJ-—‘II i1 1T P &4 10
Tvamerm 2 The Kalima hinda Nonlinear Comnblementarity nroblem (NOP)Y (with n — 4) wag
LI AANMP LD 9. LLUCT l\UJlllla"UllliluU quuuu.cm \JUlllpl lllcllbmlby pl wiciiy \l‘ wi } \Wlbll & — ‘k) wad

considered in [20], where the function F(z) is defined by

322 + 23172 + 22% + 23 + 374 — 6
v | 22+ 31 +2%+ 1023 + 224~ 2
TR k3m§+w1xz+2x§+2x3+9x4—9)'
1’%"‘3-'17%4'21?34‘31‘4—3

| Y SN
'\Z1, T2,

Let the feasible set be the simplex
C = {:BGRi |:L‘1+$2+2¢3+.’E4=4}.

For all methods, z° = (1,1,1,1)7, the termination criterion is ||7(z)|| < 10~%. The numerical
results (iterative number) of extra-gradient algorithms in [7,9,12,17] and NVE algorithm are given
in Table 3.

Table 3.

NVE (300 < p < 570) | Extra. in [12]

5 7

Extra. in (17] | Extra. in [7]
38 16

Extra. in [9)]
78
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The following example is a nonlinear complementarity problem whose defining function is taken
from Nash equilibrium problem.

EXAMPLE 4. The defining function F : R} — R" is of the form

n n
F(g)=al@) -p|Y &) -ar (D al,
=1 i=1
fori=1,2,...,n, where

ci(¢i) = g + 1—% L;I/ﬂiqz'1+1/ﬂi, p(Q) = 50001/7Q~1/7,
1

with Q = 2;.;1 g;- The data a;, Li, B;, and -y are positive scalars which are taken from [21]

Table 4.

Firm i ¢ L; Bs
10.0 5.0 1.2
8.0 5.0 1.1
6.0 5.0 1.0
4.0 5.0 9
2.0 5.0 .8

i W | =

We take n = 5, v = 1.1. The termination criterion is ||7(x)||> < 10~8. The numerical result
(iterative number) of NVE algorithm is given in Table 5.

Table 5.
initial point p=2| p=25| p=3 | p=35 | p=4
(10, 10,10,10,10) T 19 14 15 31 49
(1,1,1,,1)7 20 14 10 15 45

The numerical results show that although the optimal step-size aj is not used in Algo-
rithm NVE, the NVE type projection method has good behavior if a suitable constant p is
selected, which implies that dj is a good direction. From Section 3, we know that the optimal
step-size oy, is used in Algorithm NVE-1 or NVE-2, it should also have good behavior.
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