174,869 research outputs found

    Do men consult less than women? An analysis of routinely collected UK general practice data

    Get PDF
    <p>Objective To examine whether gender differences in primary care consultation rates (1) vary by age and deprivation status and (2) diminish when consultation for reproductive reasons or common underlying morbidities are accounted for.</p> <p>Design Cross-sectional study of a cohort of patients registered with general practice.</p> <p>Setting UK primary care.</p> <p>Subjects Patients (1 869 149 men and 1 916 898 women) registered with 446 eligible practices in 2010.</p> <p>Primary outcome measures Primary care consultation rate.</p> <p>Results This study analyses routinely collected primary care consultation data. The crude consultation rate was 32% lower in men than women. The magnitude of gender difference varied across the life course, and there was no ‘excess’ female consulting in early and later life. The greatest gender gap in primary care consultations was seen among those aged between 16 and 60 years. Gender differences in consulting were higher in people from more deprived areas than among those from more affluent areas. Accounting for reproductive-related consultations diminished but did not eradicate the gender gap. However, consultation rates in men and women who had comparable underlying morbidities (as assessed by receipt of medication) were similar; men in receipt of antidepressant medication were only 8% less likely to consult than women in receipt of antidepressant medication (relative risk (RR) 0.916, 95% CI 0.913 to 0.918), and men in receipt of medication to treat cardiovascular disease were just 5% less likely to consult (RR=0.950, 95% CI 0.948 to 0.952) than women receiving similar medication. These small gender differences diminished further, particularly for depression (RR=0.950, 95% CI 0.947 to 0.953), after also taking account of reproductive consultations.</p> <p>Conclusions Overall gender differences in consulting are most marked between the ages of 16 and 60 years; these differences are only partially accounted for by consultations for reproductive reasons. Differences in consultation rates between men and women were largely eradicated when comparing men and women in receipt of medication for similar underlying morbidities.</p&gt

    Identification of a novel TSC2 c.3610G > A, p.G1204R mutation contribute to aberrant splicing in a patient with classical tuberous sclerosis complex: a case report

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in any organ systems. Mutations in the TSC1 or TSC2 gene lead to the dysfunction of hamartin or tuberin proteins, which cause tuberous sclerosis complex. Case presentation: We describe the clinical characteristics of patients from a Chinese family with tuberous sclerosis complex and analyze the functional consequences of their causal genetic mutations. A novel heterozygous mutation (c.3610G > A) at the last nucleotide of exon 29 in TSC2 was identified. On the protein level, this variant was presumed to be a missense mutation (p.Gly1204Arg). However, the splicing assay revealed that this mutation also leads to the whole TSC2 exon 29 skipping, besides the wild-type transcript. The mutated transcript results in an in-frame deletion of 71 amino acids (p.Gly1133_Thr1203del) and its ratio with the normal splice product is of about 44:56. Conclusions: The novel c.3610G > A TSC2 mutation was identified in association with tuberous sclerosis complex. And it was proven to code both for a missense-carrying transcript (56%), and for an isoform lacking exon 29 (44%)

    Control of spin coherence in semiconductor double quantum dots

    Full text link
    We propose a scheme to manipulate the spin coherence in vertically coupled GaAs double quantum dots. Up to {\em ten} orders of magnitude variation of the spin relaxation and {\em two} orders of magnitude variation of the spin dephasing can be achieved by a small gate voltage applied vertically on the double dot. Specially, large variation of spin relaxation still exists at 0 K. In the calculation, the equation-of-motion approach is applied to obtain the electron decoherence time and all the relevant spin decoherence mechanisms, such as the spin-orbit coupling together with the electron--bulk-phonon scattering, the direct spin-phonon coupling due to the phonon-induced strain, the hyperfine interaction and the second-order process of electron-phonon scattering combined with the hyperfine interaction, are included. The condition to obtain the large variations of spin coherence is also addressed.Comment: 6 pages, 4 figures, to be published in PR

    Robust half-metallic antiferromagnets LaAAVOsO6_6 and LaAAMoYYO6_6 (AA = Ca, Sr, Ba; YY = Re, Tc) from first-principles calculations

    Full text link
    We have theoretically designed three families of the half-metallic (HM) antiferromagnets (AFM), namely, LaAAVOsO6_6, LaAAMoTcO6_6 and LaAAMoReO6_6 (AA = Ca, Sr, Ba), based on a systematic {\it ab initio} study of the ordered double perovskites LaABB′ABB'O6_6 with the possible BB and B′B' pairs from all the 3dd, 4dd and 5dd transtion metal elements being considered. Electronic structure calculations based on first-principles density-functional theory with generalized gradient approximation (GGA) for more than sixty double perovskites LaCaBB′BB'O6_6 have been performed using the all-electron full-potential linearized augmented-plane-wave method. The found HM-AFM state in these materials survives the full {\it ab initio} lattice constant and atomic position optimizations which were carried out using frozen-core full potential projector augmented wave method. It is found that the HM-AFM properties predicted previously in some of the double perovskites would disappear after the full structural optimizations. The AFM is attributed to both the superexchange mechanism and the generalized double exchange mechanism via the BB (t2gt_{2g}) - O (2pπp_{\pi}) - B′B' (t2gt_{2g}) coupling and the latter is also believed to be the origin of the HM. Finally, in our search for the HM-AFMs, we find LaAACrTcO6_6 and LaAACrReO6_6 to be AFM insulators of an unconventional type in the sense that the two antiferromagnetic coupled ions consist of two different elements and that the two spin-resolved densities of states are no longer the same.Comment: To appear in Phys. Rev.

    Dynamical Electron Mass in a Strong Magnetic Field

    Get PDF
    Motivated by recent interest in understanding properties of strongly magnetized matter, we study the dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong magnetic field. We reliably calculate the dynamical electron mass by numerically solving the nonperturbative Schwinger-Dyson equations in a consistent truncation within the lowest Landau level approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the absence of a magnetic field.Comment: 5 pages, 1 figure, published versio

    An Infrared study of the Josephson vortex state in high-Tc cuprates

    Full text link
    We report the results of the c-axis infrared spectroscopy of La_{2-x} Sr_x CuO_4 in high magnetic field oriented parallel to the CuO_2 planes. A significant suppression of the superfluid density with magnetic field rho_s(H) is observed for both underdoped (x=0.125) and overdoped (x=0.17) samples. We show that the existing theoretical models of the Josephson vortex state fail to consistently describe the observed effects and discuss possible reasons for the discrepancies

    Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction

    No full text
    International audienceAdvances in meso-scale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1) The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3) the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system

    Comment on ``Quasiparticle Spectra around a Single Vortex in a d-wave Superconductor''

    Full text link
    In a recent Letter Morita, Kohmoto and Maki analyzed the structure of quasiparticle states near a single vortex in a d-wave superconductor using an approximate version of the Bogoliubov - de Gennes theory. Their principal result is the existence of a bound state within the core region at finite energy with full rotational symmetry, which they assert explains the recent scanning tunneling microscopy results on YBCO single crystals. Here we argue that the approximation used in this work is fundamentally inadequate for the description of a d-wave vortex and that the obtained circular symmetry of the local density of states is an unphysical artifact of this approximation.Comment: 1 page REVTeX, to appear in PR
    • …
    corecore