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Dynamical electron mass in a strong magnetic field
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Motivated by recent interest in understanding properties of strongly magnetized matter, we study the
dynamical electron mass generated through approximate chiral symmetry breaking in QED in a strong
magnetic field. We reliably calculate the dynamical electron mass by numerically solving the non-
perturbative Schwinger-Dyson equations in a consistent truncation within the lowest Landau level
approximation. It is shown that the generation of dynamical electron mass in a strong magnetic field is
significantly enhanced by the perturbative electron mass that explicitly breaks chiral symmetry in the

absence of a magnetic field.

DOI: 10.1103/PhysRevD.77.025031

Properties of matter in strong magnetic fields are of
basic interest [1-5] and have great potential applications
in the physics of compact stellar objects and the early
universe cosmology [6]. The observations of soft gamma
repeaters and anomalous X-ray pulsars have provided
compelling evidence that the magnetic fields on the surface
of young neutron stars are in the range of 10'*-10'® G [7].
It has been suggested that at the electroweak phase tran-
sition local magnetic fields as high as 10?>~10** G could
be generated [8]. Situations of even stronger magnetic
fields may exist in extreme astrophysical and cosmological
environments.

It has been established that the magnetic catalysis of
chiral symmetry breaking is a nonperturbative universal
phenomenon [9-11]. A strong magnetic field acts as a
catalyst for chiral symmetry breaking, leading to the gen-
eration of a dynamical fermion mass even at the weakest
attractive interaction between fermions. The hallmark of
this effect is the dimensional reduction from (3 + 1) to
(1 +1) in the dynamics of fermion pairing in a strong
magnetic field when the lowest Landau level (LLL) plays
the dominant role. The realization of this phenomenon in
the chiral limit in QED (i.e., QED with massless fermions)
has been studied extensively in the literature over the past
decade [10-12].

But until very recently, there has been no agreement on
the correct calculation of the dynamical fermion mass
generated through chiral symmetry breaking in QED in a
strong magnetic field, and contradictory results have been
found in the literature [12,13]. The resolution of the contra-
diction lies in the establishment of the gauge fixing inde-
pendence of the dynamically generated fermion mass
calculated in the nonperturbative Schwinger-Dyson (SD)
equations approach [14]. In particular, the study of
Ref. [14] has provided an unambiguous identification of
the infinite subset of diagrams that contribute to chiral
symmetry breaking in a strong magnetic field, and led to
a consistent calculation of the dynamically generated fer-
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mion mass, reliable in the weak coupling regime and the
strong field limit (for a brief review, see Ref. [15]).

In order to highlight the most important physics regard-
ing the mechanism of chiral symmetry breaking in a strong
magnetic field, the phenomenon has been studied in the
literature mostly in the chiral limit. Nevertheless, the uni-
versal nature of the phenomenon dictates that in realistic
massive QED in a strong magnetic field, the electron will
acquire a dynamical mass generated through the modifica-
tion of the vacuum structure that is induced by the strong
magnetic field. This effect is essentially analogous to that
of the approximate chiral symmetry breaking in QCD and
the Nambu-Jona-Lasinio model [16], where, in addition to
the perturbative current quark masses, the quarks acquire
nonperturbative constituent masses of dynamical origin
that are brought about by the breaking of chiral symmetry.

In this article, we extend the study of Ref. [14] to the
case of massive QED in a strong magnetic field.
Specifically, we consistently calculate the dynamically
generated electron mass in the weak coupling regime and
the strong field limit. While similar problems have been
studied in the past [17], to the best of our knowledge, a
consistent calculation of the dynamical electron mass in a
strong magnetic field has not appeared in the literature.
Apart from its theoretical interest, this problem is of prac-
tical interest and importance. In particular, sizable modifi-
cations of the electron mass as induced by strong magnetic
fields will find applications in neutron star astrophysics and
early universe cosmology.

The Lagrangian density of massive QED in an external
magnetic field is given by

1 _ _
L= = FMF,, + dyli, + e A3 + AN — miy,

oY)

where ¢ is the quantum fermion (electron) field, A, is the
Abelian quantum gauge boson (photon) field, ¥, is the
corresponding electromagnetic field strength, and A" de-
scribes an external magnetic field. Here and henceforth,
we set 7 =c =1 and use the conventions in which
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guy = diag(—1,1, 1, 1) with u, » =0, 1, 2, 3. The Dirac
matrices satisfy {y#, v’} = —2g*” and y°> = iy'y'y?y3.

In the Lagrangian density (1), we have not included the
counterterms associated with the usual ultraviolet renor-
malization in QED. This is because we are solely interested
in the dynamics of the electrons in the LLL, which is
ultraviolet finite due to the effective dimensional reduction
as remarked above. Hence, the constants m and e in the
Lagrangian density (1) denote, respectively, the electron
mass and the absolute value of its charge that are defined
with an appropriate (perturbative) renormalization in the
absence of external fields.

We choose the constant external magnetic field of
strength B in the x3 direction. The corresponding vector
potential is given by A‘;Z“ = (0,0, Bx;,0) with B>0. A
convenient formalism for the study of QED in the presence
of a constant external magnetic field was developed a long
time ago by Ritus [18]. The so-called Ritus E, functions
are constructed in terms of the simultaneous eigenfunc-
tions (eigenvectors) of the mutually commuting operators
[y#(id, + eAS)]?, 3% = iy'y?, and y°, and form a com-
plete set of Dirac matrix-valued orthonormal functions.
The important advantage of the Ritus formalism is that in
momentum space spanned by the E,, functions, the Dirac
equation for a noninteracting fermion in a constant external
magnetic field is formally identical to that in the absence of
external fields. It is noted that because the fermion mass m
is proportional to the identity operator, which obviously
commutes with the above three operators, the Ritus formal-
ism applies to both massless and massive QED.

It has been proved in Ref. [14] that the bare vertex
approximation (BVA) is a consistent truncation of the
nonperturbative SD equations within the lowest Landau
level approximation (LLLA). With a momentum indepen-
dent fermion self-energy that fulfills the Ward-Takahashi
(WT) identity in the BVA within the LLLA, it can be shown
that (i) the truncated vacuum polarization is transverse;
(ii) the truncated fermion self-energy is gauge independent
when evaluated on the fermion mass shell. In particular, the
would-be gauge dependent contribution to the truncated
fermion self-energy, which arises from the gauge depen-
dent term in the full photon propagator, vanishes identi-
cally on the fermion mass shell. As a consequence, the
dynamical fermion mass, obtained as the solution of the
truncated SD equations evaluated on the fermion mass
shell, is manifestly gauge independent. The gauge inde-
pendent analysis presented in Ref. [14] is very general in
nature and not specific to massless QED. Here we indicate
the crucial points in the analysis extended to massive QED.

The motion of the LLL electrons is restricted in direc-
tions perpendicular to the magnetic field, leading to an
effective dimensional reduction from (3 + 1) to (1 + 1)
in the dynamics of fermion pairing in a strong magnetic
field. Consistent with the WT identity in the BVA within
the LLLA [14], the full propagator for the LLL electron in
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momentum space (spanned by the E, functions) is given
by
1
Glpp)=—"1"-A 2
Y- Pt ms

where m,. is the (gauge independent) dynamical electron
mass in a strong magnetic field, which should not be
confused with the perturbative electron mass m in the
absence of a magnetic field. The dynamical electron
mass m, is yet to be determined by solving the truncated
SD equations self-consistently. In the above expression, p|
denotes the longitudinal momentum, namely, pl’l‘ =
(p% p?) and A = (1 + 23)/2 is the projection operator
on the electron states with the spin polarized along the
external magnetic field. The projection operator A satisfies
the property Ay*A = yl’l‘ A, which clearly reflects the
effective dimensional reduction from (3 + 1) to (1 + 1)
in the dynamics of the LLL electrons.

The WT identity in the BVA within the LLLLA guaran-
tees that the vacuum polarization II ,,(¢) is transverse, i.e.,
q,11#"(q) = 0. An explicit calculation yields

qy gy
1#*(q) = T(gj, qi)<gﬁ” - %) 3)
—q + ¢} and ¢% = ¢7 + ¢3. Equation (3)
implies that the full photon propagator in covariant gauges
takes the form

where g =

1 v _ 919
D) = s (8~ ) + 55
¢ + g, )\ of 7
My
9 9 L g*q”
2qﬁ 6]2 q2

where ¢ is the gauge fixing parameter with & = 1 being the
Feynman gauge. In the above expressions, the polarization

function T1(gj, ¢7) is given by
2
a1 9
F , 5
2 B) (nz)  ©

Fu) =1 - 1 1/1+1/u-i—1 ©)
2u¢1-%1/u Jl—kl/u——]

where a = ¢2/4r is the fine-structure constant. The di-

mensionless function F(u) has the following asymptotic

behavior: F(u) ~2u/3 for |lu|l <1, and F(u) =1 for

|u| > 1. Hence, photons of momenta m?2 < |qﬁ| < ¢B

H(q” q1) = eB exp(

and qﬁ_ < eB are screened with a characteristic screening
length € = 1/,/(2a/7)eB induced by the strong magnetic
field.

The self-energy of the LLL electron evaluated on the
mass shell, pﬁ = —m2, leads to the so-called gap equation
that determines the dynamical electron mass m., self-
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consistently. The WT identity in the BVA within the LLLA
guarantees that contributions to the LLL electron self-
energy from the gauge dependent term as well as from
the terms proportional to ql’l‘ qy / qﬁ in D**(q) vanish iden-
tically on the electron mass shell (see Ref. [14] for a
detailed discussion). Thus, in the BVA within the LLLA
we obtain the (gauge independent) on-shell electron SD
equation

d*q m,
Qm* (p - C])ﬁ +m?
exp(—q3 /2eB)
q* + (g, 47)

m, =m + ie?

: (7)

2 _ .2
Py=ms

where the projection operator A that multiplies both sides
of the equation has been dropped. Using the mass shell
condition pl’l‘ = (m,, 0) that corresponds to a LLL electron

at rest and performing a Wick rotation to Euclidean space,
we find the gap equation to be given by

m.=m+—— fdz i
* 21 I g3 + (g4 — m.)? + m2
% ]OO qz CXP(_f]i/ZEB)
o tqft+qi gl L)

where g = g3 + ¢j is the photon longitudinal momentum

®)

squared in Euclidean space.

Before proceeding further, we discuss the solution to the
gap equation (8) in the chiral limit (i.e., m = 0). This will
be useful for our discussions below. The solution in the
chiral limit (denoted here and henceforth by myy,) was
obtained numerically and shown to be fitted by the analytic
expression [14]

Mgyn = av2eBa exp[—

e B

where a is a constant of order one and b = 2.3. From
Eq. (9) it can be seen clearly that while on the one hand
Mgy, scales as \/2eB and increases with increase of B, on
the other hand it is exponentially suppressed at weak
coupling. The wide separation of scales mgy, < JeB,
together with the gauge independence of mygy,, is at the
heart of the fact that the result of mg4y, given by Eq. (9) is
reliable in the weak coupling regime and the strong field
limit [14]. To get a feeling of the order of magnitudes
involved, it is instructive to note that for a = 1/137,
Mgy, s about 34 orders of magnitude smaller than the
energy between adjacent Landau levels, +/2eB, and it
would require an enormous magnetic field of about
108 G to have mgy, comparable to m. As a result, this
nonperturbative effect can be safely ignored in the chiral
limit in QED even though ultrastrong magnetic fields may
be under consideration.
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However, as will be seen below, in realistic massive
QED the generation of dynamical electron mass in a strong
magnetic field is significantly enhanced by the perturbative
electron mass that explicitly breaks chiral symmetry in the
absence of a magnetic field. This is the novel result of the
present article.

We have numerically solved the gap equation (8) to
obtain m, as a function of B. In Fig. 1 the dynamical
electron mass m, (together with its value in the chiral limit,
Mgyy) is plotted against the magnetic field strength B for
several values of the fine-structure constant «c. While we
are not able to find an analytic expression that fits the
numerical results, an analysis of the gap equation (8) shows
that for fixed « its solution in an asymptotically strong
magnetic field is reduced to the solution in the chiral limit.
In other words, for fixed o we have m,. = Mgyn AS B — oo,
This asymptotic behavior is verified numerically as can be
seen clearly in Fig. 1.

Several important features of the dynamical electron
mass generated in a strong magnetic field can be gleaned
from Fig. 1.

(i) There is a wide separation of scales m, <K JeB as
long as the coupling is weak and the magnetic field is
strong. As remarked above, together with the gauge
independence of m,, the wide separation of scales
means that our results for m, are reliable in the weak
coupling regime and the strong field limit.

(i) Let B, denote the magnetic field for which mgy, is
equal to m (i.e., the intercept of the thin line with the

abscissa in Fig. 1). It is clear from the figure that for
B = B,,, the corresponding m.. is about one order of
magnitude larger than m, a property that is fairly
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FIG. 1. Plot of the dynamical electron mass m, (in units of the

perturbative electron mass m) as a function of the magnetic field
strength B (in units of the characteristic value By = m?/e =~
4.4 X 1013 G) for several values of the fine-structure constant c.
The thin lines represent the corresponding results in the chiral
limit, i.e., Mmgy,. Note that for @ = 1/137 the corresponding
result in the chiral limit lies outside the plot range.
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independent of the values of «. This provides a
distinct signature that the generation of dynamical
electron mass in a strong magnetic field is signifi-
cantly enhanced by the perturbative electron mass.
Specifically, we note that for @ = 1/137 there al-
ready has been a few percent increase in the electron
mass around 10" G, the typical magnetic fields on
the surface of young neutron stars. Such an effect is
within the precision of current and future astrophys-
ical measurements. Furthermore, we note that the
transition of the behavior of m. from the intermedi-
ate to the asymptotic takes place around B = B,,,
and again is fairly independent of «.

(iii) For fixed B, m. increases with increase of a. At
weak coupling, the dynamical contribution to the
electron mass is small but sizable as compared to its
exponentially suppressed counterpart in the chiral
limit. Nevertheless, the dynamical contribution be-
comes substantial and eventually dominant over the
perturbative electron mass as the coupling in-
creases. This aspect is of particular importance
when the effects of the running coupling in a strong
magnetic field are taken into consideration.

The enhancement of the dynamical electron mass can be
understood in terms of the screening effect modified by the
perturbative electron mass, m. First, we consider the chiral
limit. The corresponding polarization function TT(gj, ¢7)

is given by Eq. (5) with the replacement F (qﬁ/4m§) —
F(qj/4m,). In the region of B where mqy, is exponen-
tially small, one can make the approximation
F(qj/4mj,) = F(00) = 1. When plugged into the gap
equation (8), this in turn implies that photons with
(Euclidean) momenta 0 < qﬁ <K eB are effectively
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screened. The screening effect explains the smallness of
Mgy, Away from the chiral limit, on the other hand, the
perturbative electron mass m introduces into the problem
an additional energy scale that is independent of the LLL
dynamics. In the region of B where ém, = m, —m K m
(as can be seen in Fig. 1, this would be the same region of B
considered above in the chiral limit), one can make the
replacement F(qﬁ/4m%) — F(qﬁ/4m2) in H(qﬁ, g% ). This
in turn means that photons with momenta m* < ¢j; < B

are effectively screened. As a result, the contribution from
photons with momenta 0 < g << m” that are not screened
is responsible for the enhancement of the dynamical elec-
tron mass in a strong magnetic field.

The above arguments do not depend on the specific
value of «, and remain valid up to a magnetic field for
which ém../m ~ O(1) [or, alternatively, mgy,/m ~ O(1)].
As we have noticed above, this takes place around the
magnetic field B = B,,, for which m, is almost about one
order of magnitude larger than m. This also explains why
the transition of the behavior of m. from the intermediate
to the asymptotic takes place around B = B,,,.

In conclusion, the significant enhancement of the dy-
namical electron mass in QED in a strong magnetic field is
a novel effect. We envisage a similar enhancement of the
dynamical quark masses in QCD in a strong magnetic field
[19]. It would be interesting and useful to consider appli-
cations of these effects in astrophysics and cosmology.
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