151,579 research outputs found

    Structural ambiguity of the Chinese version of the hospital anxiety and depression scale in patients with coronary heart disease

    Get PDF
    Background The Hospital Anxiety and Depression Scale (HADS) is a widely used screening tool designed as a case detector for clinically relevant anxiety and depression. Recent studies of the HADS in coronary heart disease (CHD) patients in European countries suggest it comprises three, rather than two, underlying sub-scale dimensions. The factor structure of the Chinese version of the HADS was evaluated in patients with CHD in mainland China. Methods Confirmatory factor analysis (CFA) was conducted on self-report HADS forms from 154 Chinese CHD patients. Results Little difference was observed in model fit between best performing three-factor and two-factor models. Conclusion The current observations are inconsistent with recent studies highlighting a dominant underlying tri-dimensional structure to the HADS in CHD patients. The Chinese version of the HADS may perform differently to European language versions of the instrument in patients with CHD

    Jastrow-Correlated Wavefunctions for Flat-Band Lattices

    Get PDF
    The electronic band structure of many compounds, e.g., carbon-based structures, can exhibit essentially no dispersion. Models of electrons in flat-band lattices define non-perturbative strongly correlated problems by default. We construct a set of Jastrow-correlated ansatz wavefunctions to capture the low energy physics of interacting particles in flat bands. We test the ansatz in a simple Coulomb model of spinless electrons in a honeycomb ribbon. We find that the wavefunction accurately captures the ground state in a transition from a crystal to a uniform quantum liquid.Comment: 5 pages, 4 figures, update context, references and publication informatio

    Theory of doped Mott insulators: duality between pairing and magnetism

    Full text link
    By bosonizing the electronic t-J model exactly on any two-dimensional (2D) lattices, and integrating out the gauge fluctuations combined to slave particles beyond mean fields, we get a theory in terms of physical Cooper pair and spin condensates. In the sense of mutual Berry phase they turns out to be dual to each other. The mutual-duality is the missing key in the resonant-valance-bond idea\cite{rvb} to work as a paradigm of doped 2D Mott insulators. We argue that essential aspects of high-TcT_c phenomenology find natural solutions in the theory. We also provide interesting predictions for systems on hexagonal lattices.Comment: 4 pages, no figures, Submitted to Phys. Rev. Let

    Challenges to smartphone applications for melanoma detection

    Get PDF
    This commentary addresses the emerging market for health-related smartphone applications. Specific to dermatology, there has been a significant increase not only in applications that promote skin cancer awareness and education but also in those meant for detection. With evidence showing that 365 dermatology-related applications were available in 2014--up from 230 in 2012--and that 1 in 5 patients under the age of 50 have used a smartphone to help diagnose a skin problem, there is clearly a large subset of patients participating in this growing trend. Therefore, we are obligated to take a closer look into this phenomenon. Studies have shown that applications are inferior to in-person consultations with one study showing that 3 out of 4 applications incorrectly classified 30% or more melanomas as low-risk lesions. Although the FDA gained regulatory oversight over mobile health applications in 2012 and recently released their statement in 2015, their reach only extends to cover a selected portion of these applications, leaving many unregulated as they continue to be marketed toward our patients. Dermatologists should be updated on our current situation in order to properly counsel patients on the risks and benefits of these applications and whether they are acceptable for use. © 2016 by the article author(s)

    Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distribution in Photoacoustic Computed Tomography: A numerical Investigation

    Get PDF
    Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that seeks to reconstruct an estimate of the absorbed optical energy density within an object. Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), which can result in image artifacts when acoustic aberrations are significant. It has been demonstrated that incorporating knowledge of an object's SOS distribution into a PACT image reconstruction method can improve image quality. However, in many cases, the SOS distribution cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, certain information regarding an object's SOS distribution is encoded in the PACT measurement data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy density from the photoacoustic measurement data. A broad understanding of the extent to which the JR problem can be accurately and reliably solved has not been reported. In this work, a series of numerical experiments is described that elucidate some important properties of the JR problem that pertain to its practical feasibility. To accomplish this, an optimization-based formulation of the JR problem is developed that yields a non-linear iterative algorithm that alternatingly updates the two image estimates. Heuristic analytic insights into the reconstruction problem are also provided. These results confirm the ill-conditioned nature of the joint reconstruction problem that will present significant challenges for practical applications.Comment: 13 pages, submitted to IEEE Transactions on Computational Imagin

    Quasinormal modes and late-time tails in the background of Schwarzschild black hole pierced by a cosmic string: scalar, electromagnetic and gravitational perturbations

    Full text link
    We have studied the quasinormal modes and the late-time tail behaviors of scalar, electromagnetic and gravitational perturbations in the Schwarzschild black hole pierced by a cosmic string. Although the metric is locally identical to that of the Schwarzschild black hole so that the presence of the string will not imprint in the motion of test particles, we found that quasinormal modes and the late-time tails can reflect physical signatures of the cosmic string. Compared with the scalar and electromagnetic fields, the gravitational perturbation decays slower, which could be more interesting to disclose the string effect in this background.Comment: 17 pages; 7 figure

    Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene

    Full text link
    Using first-principles calculations, we have investigated the evolution of band-edges in few-layer phosphorene as a function of the number of P layers. Our results predict that monolayer phosphorene is an indirect band gap semiconductor and its valence band edge is extremely sensitive to strain. Its band gap could undergo an indirect-to-direct transition under a lattice expansion as small as 1% along zigzag direction. A semi-empirical interlayer coupling model is proposed, which can well reproduce the evolution of valence band-edges obtained by first-principles calculations. We conclude that the interlayer coupling plays a dominated role in the evolution of the band-edges via decreasing both band gap and carrier effective masses with the increase of phosphorene thickness. A scrutiny of the orbital-decomposed band structure provides a better understanding of the upward shift of valence band maximum surpassing that of conduction band minimum.Comment: 25 pages, 9 figure
    • …
    corecore