3,957 research outputs found
Design and application of a multi-modal process tomography system
This paper presents a design and application study of an integrated multi-modal system designed to support a range of common modalities: electrical resistance, electrical capacitance and ultrasonic tomography. Such a system is designed for use with complex processes that exhibit behaviour changes over time and space, and thus demand equally diverse sensing modalities. A multi-modal process tomography system able to exploit multiple sensor modes must permit the integration of their data, probably centred upon a composite process model. The paper presents an overview of this approach followed by an overview of the systems engineering and integrated design constraints. These include a range of hardware oriented challenges: the complexity and specificity of the front end electronics for each modality; the need for front end data pre-processing and packing; the need to integrate the data to facilitate data fusion; and finally the features to enable successful fusion and interpretation. A range of software aspects are also reviewed: the need to support differing front-end sensors for each modality in a generic fashion; the need to communicate with front end data pre-processing and packing systems; the need to integrate the data to allow data fusion; and finally to enable successful interpretation. The review of the system concepts is illustrated with an application to the study of a complex multi-component process
Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain
The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85–1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane ez5931024, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2–4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity
Parametric pumping at finite frequency
We report on a first principles theory for analyzing the parametric electron
pump at a finite frequency. The pump is controlled by two pumping parameters
with phase difference . In the zero frequency limit, our theory predicts
the well known result that the pumped current is proportional to .
For the more general situation of a finite frequency, our theory predicts a
non-vanishing pumped current even when the two driving forces are in phase, in
agreement with the recent experimental results. We present the physical
mechanism behind the nonzero pumped current at , which we found to be
due to photon-assisted processes
Arbitrarily large families of spaces of the same volume
In any connected non-compact semi-simple Lie group without factors locally
isomorphic to SL_2(R), there can be only finitely many lattices (up to
isomorphism) of a given covolume. We show that there exist arbitrarily large
families of pairwise non-isomorphic arithmetic lattices of the same covolume.
We construct these lattices with the help of Bruhat-Tits theory, using Prasad's
volume formula to control their covolumes.Comment: 9 pages. Syntax corrected; one reference adde
Assessing economic impacts of China’s water pollution mitigation measures through a dynamic computable general equilibrium analysis.
In this letter, we apply an extended environmental dynamic computable general equilibrium model to assess the economic consequences of implementing a total emission control policy. On the basis of emission levels in 2007, we simulate different emission reduction scenarios, ranging from 20 to 50% emission reduction, up to the year 2020. The results indicate that a modest total emission reduction target in 2020 can be achieved at low macroeconomic cost. As the stringency of policy targets increases, the macroeconomic cost will increase at a rate faster than linear. Implementation of a tradable emission permit system can counterbalance the economic costs affecting the gross domestic product and welfare. We also find that a stringent environmental policy can lead to an important shift in production, consumption and trade patterns from dirty sectors to relatively clean sector
Optimal quantum pump in the presence of a superconducting lead
We investigate the parametric pumping of a hybrid structure consisting of a
normal quantum dot, a normal lead and a superconducting lead. Using the time
dependent scattering matrix theory, we have derived a general expression for
the pumped electric current and heat current. We have also derived the
relationship among the instantaneous pumped heat current, electric current, and
shot noise. This gives a lower bound for the pumped heat current in the hybrid
system similar to that of the normal case obtained by Avron et al
Quantization of adiabatic pumped charge in the presence of superconducting lead
We investigate the parametric electron pumping of a double barrier structure
in the presence of a superconducting lead. The parametric pumping is
facilitated by cyclic variation of the barrier heights and of the
barriers. In the weak coupling regime, there exists a resonance line in the
parameter space so that the energy of the quasi-bound state is in
line with the incoming Fermi energy. Levinson et al found recently that the
pumped charge for each pumping cycle is quantized with for normal
structure when the pumping contour encircles the resonance line. In the
presence of a superconducting lead, we find that the pumped charge is quantized
with the value
On the Interplay of Monopoles and Chiral Symmetry Breaking in Non-Compact Lattice QED
Non-compact lattice QED is simulated for various numbers of fermion species
ranging from 8 through 40 by the exact Hybrid Monte Carlo algorithm. Over
this range of , chiral symmetry breaking is found to be strongly
correlated with the effective monopoles in the theory. For between 8 and
16 the chiral symmetry breaking and monopole percolation transitions are second
order and coincident. Assuming powerlaw critical behavior, the correlation
length exponent for the chiral transition is identical to that of monopole
percolation. This result supports the conjecture that monopole percolation
``drives" the nontrivial chiral transition. For between 20 and 32, the
monopoles experience a first order condensation transition coincident with a
first order chiral transition. For as large as 40 both transitions are
strongly suppressed. The data at large N_f (N_f \mathrel {\mathpalette \vereq
>} 20) is interpreted in terms of a strongly interacting monopole gas-liquid
transition.Comment: Revtex file, 23 pages, hardcopy figures only
- …