In any connected non-compact semi-simple Lie group without factors locally
isomorphic to SL_2(R), there can be only finitely many lattices (up to
isomorphism) of a given covolume. We show that there exist arbitrarily large
families of pairwise non-isomorphic arithmetic lattices of the same covolume.
We construct these lattices with the help of Bruhat-Tits theory, using Prasad's
volume formula to control their covolumes.Comment: 9 pages. Syntax corrected; one reference adde