181,254 research outputs found

    MHD Waves and Coronal Seismology: an overview of recent results

    Full text link
    Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares

    Thermodynamical properties of dark energy

    Get PDF
    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a−nT\sim a^{-n} and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>−1w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously.Comment: 5 two column pages, 2 figures; v2: discussion on thermal equilibrium with the horizon is added, v3: minor corrections, published in PR

    Synthesis of Homo- and Heterobimetallic Ni\u3csup\u3eII\u3c/sup\u3e–M\u3csup\u3eII\u3c/sup\u3e (M = Fe, Co, Ni, Zn) Complexes Based on an Unsymmetric Ligand Framework: Structures, Spectroscopic Features, and Redox Properties

    Get PDF
    Several homo- and heterobimetallic NiII–MII complexes (MII = Fe, Co, Ni, Zn) supported by an unsymmetric polydentate ligand (L13−) are reported (L13− is the trianion of 2-[bis(2-hydroxy-3,5-tert-butylphenyl)aminomethyl]-4-methyl-6-[(2-pyridylmethyl)iminomethyl]phenol). The L13− chelate provides two distinct coordination environments: a planar tridentate {N2O} site (A) and a tetradentate {NO3} site (B). Reaction of L13− with equimolar amounts of NiII and MII salts provides bimetallic complexes in which the NiII ion exclusively occupies the tetragonal A-site and the MII ion is found in the tripodal B-site. X-ray crystal structures revealed that the two metal centers are bridged by the central phenolate donor of L13− and an anionic X-ligand, where X = μ-1,1-acetate, hydroxide, or methoxide. The metal ions are separated by 3.0–3.1 Å in the MAMBX structures, where MA and MB indicate the ion located in the A and B sites, respectively, and X represents the second bridging ligand. Analysis of magnetic data and UV–Vis–NIR spectra indicate that, in all cases, the two metal ions adopt high-spin states in solution. The NiAII centers undergo one-electron reduction at −1.17 V vs. SCE, while the NiII and CoII ions in the phenolate-rich B-site are reduced at lower potentials. Significantly, the NiAII center possesses three open or labile coordination sites in a meridional geometry, which are generally occupied by solvent-derived ligands in the crystal structures. The NiMBX complexes serve as structural mimics of heterometallic Ni-containing sites in biology, such as the C-cluster of carbon monoxide dehydrogenase (CODH)
    • …
    corecore