2,165 research outputs found

    Quantum interference structures in trapped ion dynamics beyond the Lamb-Dicke and rotating wave approximations

    Full text link
    We apply wave packet methods to study an ion-trap system in the strong excitation regime imposing neither the rotating wave nor the Lamb-Dicke approximations. By this approach we show the existence of states with restricted phase space evolution, as a genuine consequence of quantum interference between wave packet fractions. A particular instance of such a state oscillates between maximal entanglement and pure disentanglement between the constitute subsystems. The characteristic crossover time is very rapid making them suitable for state preparations of EPR or Schrodinger cat states. Over longer time periods the dynamics of these states exhibits collapse-revival patterns with well resolved fractional revivals in autocorrelation, inversion and entanglement.Comment: 11 pages, 5 figures. Replaced with revised version. Phys. Rev. A 77, 053808 (2008

    A tachyonic scalar field with mutually interacting components

    Full text link
    We investigate the tachyonic cosmological potential V(Ď•)V(\phi) in two different cases of the quasi-exponential expansion of universe and discuss various forms of interaction between the two components---matter and the cosmological constant--- of the tachyonic scalar field, which leads to the viable solutions of their respective energy densities. The distinction among the interaction forms is shown to appear in the Om(x)O_{m}(x) diagnostic. Further, the role of the high- and low-redshift observations of the Hubble parameter is discussed to determine the proportionality constants and hence the correct form of matter--cosmological constant interaction.Comment: 14 page

    Dilatonic global strings

    Get PDF
    We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time-dependence. We also demonstrate a time-dependent non-singular string/anti-string configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.Comment: 18 pages RevTeX, 3 figures, references amende

    Self-Similar Shocks and Winds in Galaxy Clusters

    Full text link
    A theoretical model framework of spherical symmetry is presented for a composite astrophysical system of two polytropic fluids coupled together by gravity to explore large-scale shocks and flow dynamics in clusters of galaxies or in globular clusters. The existence of such large-scale shocks in clusters of galaxies as inferred by high-resolution X-ray and radio imaging observations implies large-scale systematic flows that are beyond usual static models for clusters of galaxies. Here, we explore self-similar two-fluid flow solutions with shocks for a hot polytropic gas flow in a cluster of galaxies in the presence of a massive dark matter (DM) flow after the initiation of a gravitational core collapse or a central AGN activity or a large-scale merging process. In particular, the possibility of DM shocks or sharp jumps of mass density and of velocity dispersion in dark matter halo is discussed and such DM shocks might be detectable through gravitational lensing effects. To examine various plausible scenarios for clusters of galaxies, we describe three possible classes of shock flows within our model framework for different types of temperature, density and flow speed profiles. Depending upon sensible model parameters and shock locations, the hot ICM and DM halo may have various combinations of asymptotic behaviours of outflow, breeze, inflow, contraction or static envelopes at large radii at a given time. We refer to asymptotic outflows of hot ICM at large radii as the galaxy cluster wind. As a result of such galaxy cluster winds and simultaneous contractions of DM halo during the course of galaxy cluster evolution, there would be less hot ICM within clusters of galaxies as compared to the average baryon fraction in the Universe.Comment: 26 pages, 20 figure

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+Îł=2n+\gamma=2 with Îł\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS

    Galaxy Clusters Selected with the Sunyaev-Zel'dovich Effect from 2008 South Pole Telescope Observations

    Get PDF
    We present a detection-significance-limited catalog of 21 Sunyaev-Zel'dovich selected galaxy clusters. These clusters, along with 1 unconfirmed candidate, were identified in 178 deg^2 of sky surveyed in 2008 by the South Pole Telescope to a depth of 18 uK-arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z=0.15 to z>1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, three were previously identified as Abell clusters, three were presented as SPT discoveries in Staniszewski et al, 2009, and three were first identified in a recent analysis of BCS data by Menanteau et al, 2010; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M_200 ~ 5x10^14 M_sun/h at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to ~4x10^14 M_sun/h at z=1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use the cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP 7-year analysis yields sigma_8 = 0.81 +- 0.09 and w = -1.07 +- 0.29, a ~50% improvement in precision on both parameters over WMAP7 alone.Comment: 19 pages, 9 figures, 4 appendice

    Properties of Binary Transition-Metal Arsenides (TAs)

    Full text link
    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is made with powder X-ray diffraction, temperature and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic order below TN = 71 K and TN \approx 260 K, respectively. MnAs is a ferromagnet below TC = 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS = 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 uV/K and - 40 uV/K in the 2 K to 300 K range, whereas thermal conductivity values stay below 18 W/(m K). The Sommerfeld-coefficient {\gamma} are less than 10 mJ/(K2mol). At room temperature with application of 8 Tesla magnetic field, large positive magnetoresistance is found for TaAs (~25%), MnAs (~90%) and for NbAs (~75%).Comment: 7 figures; Will be published in the upcoming focus issue in Superconductor Science and Technolog
    • …
    corecore