12,101 research outputs found

    Response of grasslands conversion to croplands on soil organic carbon in Bashang area of Northern China

    Get PDF
    This study investigated the effects of two types of grasslands conversion to croplands on soil organic carbon (SOC) in Bashang area where it is a typical agro-pastoral ecotone of Northern China using a pare-site method. The results showed that the SOC contents and densities decreased with increasing soil depth. The soil bulk density and SOC content significantly decreased in the upper horizon after the grasslands was converted into croplands. The SOC densities were approximately 2.3 - 2.7 and 4.2 - 9.1 kg C m-2 in the upper horizons of site 1 and site 2, respectively, with significant differences between grasslands and croplands. The SOC densities up to 60 cm depth were much higher in site 2 (intrazonalgrassland-cropland) than in site 1 (zonal grassland-cropland), reaching approximately 13.24 - 22.49 and 5.36 - 6.49 kg C m-2, respectively. The conversion of grasslands to croplands induced a moderate loss ofSOC, with a range of - 4 to 55% for the 0 - 60 cm depth over about 20-year period. To conserve the present status, potential conversion should be banned in both zonal and intrazonal grassland, the zonalgrassland should be enforced “turning cropland to grassland” policy, and the intrazonal grassland be reasonably used

    Cloning and characterization of peptidylprolyl isomerase B in the silkworm, Bombyx mori

    Get PDF
    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, we cloned a B. mori PPIase gene PPIB and characterized it by bioinformatic and experimental analysis. We found that the B. mori PPIB gene contains 4 exons and its cDNA is about of618 bp, encoding a protein of 205 amino acid residues (21474.41 Da) with an isoelectric point of 8.05. PPIB contains conserved and unique cyclophilin domain and belongs to cyclophilin superfamily. Its transcription could be detected by PCR in all the B. mori tissue samples, which is consistent withnormal PPIase expression pattern and their essential roles. It is localized in cytoplasm revealed by fluorescence microscopy. We also successfully expressed this protein in E. coli and characterized it by SDS-PAGE and Mass Spectrometry. The cloned DNA sequence was submitted to GenBank (EU583493)

    High-Speed, Heavy-Load, and Direction-Controllable Photothermal Pneumatic Floating Robot.

    Get PDF
    Light-fueled actuators are promising in many fields due to their contactless, easily controllable, and eco-efficiency features. However, their application in liquid environments is complicated by the existing challenges of rapid deformation in liquids, light absorption of the liquid media, and environmental contamination. Here, we design a photothermal pneumatic floating robot (PPFR) using a boat-paddle structure. Light energy is converted into thermal energy of air by an isolated photothermal composite, which is then converted into mechanical energy of liquid to drive the movement of PPFRs. By understanding and controlling the photothermal actuation, the PPFR can achieve an average velocity of 13.1 mm s-1 in water and can be modified for remote on-demand differential steering and self-sustained oscillation. The PPFR may be modified to provide a lifting mechanism, capable of moving 4 times the PPFR mass. Various shapes and materials are suitable for the PPFR, providing a platform for liquid surface transporting, water sampling, pollutant collecting, underwater photography, and photocontrol robots in shallow water

    Spiral Chain O4 Form of Dense Oxygen

    Full text link
    Oxygen is in many ways a unique element: the only known diatomic molecular magnet and the capability of stabilization of the hitherto unexpected O8 cluster structure in its solid form at high pressure. Molecular dissociations upon compression as one of the fundamental problems were reported for other diatomic solids (e.g., H2, I2, Br2, and N2), but it remains elusive for solid oxygen, making oxygen an intractable system. We here report the theoretical prediction on the dissociation of molecular oxygen into a polymeric spiral chain O4 structure (\theta-O4) by using first-principles calypso method on crystal structure prediction. The \theta-O4 stabilizes above 2 TPa and has been observed as the third high pressure phase of sulfur (S-III). We find that the molecular O8 phase remains extremely stable in a large pressure range of 0.008 - 2 TPa, whose breakdown is driven by the pressure-induced instability of a transverse acoustic phonon mode at zone boundary, leading to the ultimate formation of \theta-O4. Remarkably, stabilization of \theta-O4 turns oxygen from a superconductor into an insulator with a wide band gap (approximately 5.9 eV) originating from the sp3-like hybridized orbitals of oxygen and the localization of valence electrons. (This is a pre-print version of the following article: Li Zhu et al, Spiral chain O4 form of dense oxygen, Proc. Natl. Acad. Sci. U.S.A. (2011), doi: 10.1073/pnas.1119375109, which has been published online at http://www.pnas.org/content/early/2011/12/27/1119375109 .)Comment: 13 apages, 3 figure

    Effect of Relief-hole Diameter on Die Elastic Deformation during Cold Precision Forging of Helical Gears

    Get PDF
    During cold precision forging of helical gears, the die experiences high forming pressure resulting in elastic deformation of the die, a main factor affecting dimensional accuracy of a formed gear. The divided flow method in material plastic deformation is an effective way to reduce the forming force and the die pressure during cold precision forging of helical gears. In this study, by utilizing the flow-relief-hole method, a billet design with different initial diameters of the relief-hole is developed to improve the dimensional accuracy of cold forging gears. Three-dimensional Finite Element (FE) models are established to simulate the plastic deformation process of billet during cold precision forging of a helical gear and to determine the forming force acting on the die. Further models of die stress analysis are developed to examine the die elastic deformation and distribution of the displacement. Effects of the relief-hole diameters on die elastic deformation are studied. The results show that the elastic deformation of the die is different in the addendum, dedendum, and involute parts of forging gear using different relief-hole diameters. The die elastic deformation increases firstly and then decreases when the relief-hole diameter increases. The tooth portions are of larger elastic deformation and the peak value locates in the addendum. It shows the importance of optimizing the relief-hole diameter to minimize the dimensional inaccuracy of forging gears caused by the die elastic deformation

    Multiphase flow numerical simulation of ladle bottom powder injection

    Get PDF
    Numerical simulations were performed on bottom injection of calcium oxide particles through double nozzle porous bricks into a 300 t hot metal ladle. The distribution characteristics of the calcium oxide particles in the ladle were predicted and analyzed. The modeling results show that, when the bottom blown porous bricks are located symmetrically off-centre by 1 / 2 ladle bottom radius and the injection speed of the calcium oxide particles is 7 m / s, an optimum distribution of the calcium oxide particles in the hot metal bath in the ladle can be achieved. This will provide a reference for evaluating the feasibility of applying bottom injection of the calcium oxide powder into hot metal ladles for desulfurization in the actual production process

    Solving 0-1 Knapsack Problem by Greedy Degree and Expectation Efficiency

    Get PDF
    It is well known that 0-1 knapsack problem (KP01) plays an important role in both computing theory and real life application. Due to its NP-hardness, lots of impressive research work has been performed on many variants of the problem. Inspired by region partition of items, an effective hybrid algorithm based on greedy degree and expectation efficiency (GDEE) is presented in this paper. In the proposed algorithm, initially determinate items region, candidate items region and unknown items region are generated to direct the selection of items. A greedy degree model inspired by greedy strategy is devised to select some items as initially determinate region. Dynamic expectation efficiency strategy is designed and used to select some other items as candidate region, and the remaining items are regarded as unknown region. To obtain the final items to which the best profit corresponds, static expectation efficiency strategy is proposed whilst the parallel computing method is adopted to update the objective function value. Extensive numerical investigations based on a large number of instances are conducted. The proposed GDEE algorithm is evaluated against chemical reaction optimization algorithm and modified discrete shuffled frog leaping algorithm. The comparative results show that GDEE is much more effective in solving KP01 than other algorithms and that it is a promising tool for solving combinatorial optimization problems such as resource allocation and production scheduling
    corecore