1,876 research outputs found

    Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution

    Get PDF
    We first present nonparaxial designs for a microcylindrical axilens with different long focal depths and rigorously analyze electromagnetic field distributions of the axilens using integral equations and the boundary-element method. Numerical results show that the designed axilenses indeed have the special feature of attaining a long focal depth while keeping high transverse resolution for numerical apertures of 2.4, 2.0, and 1.0. The ratio between the extended focal depth of the designed axilens and the focal depth of the conventional focal lens is 1.41, the corresponding maximal extended focal depth of the axilens can reach 28 μm, and the spot size of the focal beam is ∼10 μm over the focal range. © 2001 Optical Society of America.published_or_final_versio

    Buy Now and Price Later: Supply Contracts with Time-Consistent Mean-Variance Financial Hedging

    Get PDF
    We consider a two-stage supply chain comprising one risk-neutral manufacturer (he) and one risk-averse retailer (she), where the manufacturer procures consumption commodities in spot market as major inputs for production and sells the final products to the retailer. The retailer then sells the final products to the market at a stochastic clearance price. We investigate a flexible price contract that allows the manufacturer to determine the product wholesale price, and the retailer to determine the order quantity, based on the future spot price of consumption commodities. Compared with the simple wholesale price contract, a win-win situation can be achieved under the flexible price contract when the manufacturer's postponed processing cost is lower than a threshold. However, under this flexible price contract the retailer may suffer from the commodity price volatility, even if she does not procure the commodities directly. We further investigate how the risk-averse retailer conducts mean-variance financial hedging by purchasing consumption commodity futures contracts. We formulate the problem using a dynamic programming model and derive a closed-form time-consistent financial hedging policy. Through numerical experiments, we show that the commodity price risk from the manufacturer to the retailer is effectively mitigated with the hedging, and the benefits of the flexible price contract are maintained

    Dent disease: A window into calcium and phosphate transport

    Get PDF
    This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones

    A Genetic Screen for Dihydropyridine (DHP)-Resistant Worms Reveals New Residues Required for DHP-Blockage of Mammalian Calcium Channels

    Get PDF
    Dihydropyridines (DHPs) are L-type calcium channel (Cav1) blockers prescribed to treat several diseases including hypertension. Cav1 channels normally exist in three states: a resting closed state, an open state that is triggered by membrane depolarization, followed by a non-conducting inactivated state that is triggered by the influx of calcium ions, and a rapid change in voltage. DHP binding is thought to alter the conformation of the channel, possibly by engaging a mechanism similar to voltage dependent inactivation, and locking a calcium ion in the pore, thereby blocking channel conductance. As a Cav1 channel crystal structure is lacking, the current model of DHP action has largely been achieved by investigating the role of candidate Cav1 residues in mediating DHP-sensitivity. To better understand DHP-block and identify additional Cav1 residues important for DHP-sensitivity, we screened 440,000 randomly mutated Caenorhabditis elegans genomes for worms resistant to DHP-induced growth defects. We identified 30 missense mutations in the worm Cav1 pore-forming (α1) subunit, including eleven in conserved residues known to be necessary for DHP-binding. The remaining polymorphisms are in eight conserved residues not previously associated with DHP-sensitivity. Intriguingly, all of the worm mutants that we analyzed phenotypically exhibited increased channel activity. We also created orthologous mutations in the rat α1C subunit and examined the DHP-block of current through the mutant channels in culture. Six of the seven mutant channels examined either decreased the DHP-sensitivity of the channel and/or exhibited significant residual current at DHP concentrations sufficient to block wild-type channels. Our results further support the idea that DHP-block is intimately associated with voltage dependent inactivation and underscores the utility of C. elegans as a screening tool to identify residues important for DHP interaction with mammalian Cav1 channels

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Rem2-Targeted shRNAs Reduce Frequency of Miniature Excitatory Postsynaptic Currents without Altering Voltage-Gated Ca2+ Currents

    Get PDF
    Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays important roles in neuronal cell development and function. Rem2 is a member of the RGK (Rad, Rem, Rem2, Gem/Kir) subfamily of small GTPases that confers potent inhibition upon VGCCs. The physiologic roles of RGK proteins, particularly in the brain, are poorly understood. Rem2 was implicated in synaptogenesis through an RNAi screen and proposed to regulate Ca2+ homeostasis in neurons. To test this hypothesis and uncover physiological roles for Rem2 in the brain, we investigated the molecular mechanisms by which Rem2 knockdown affected synaptogenesis and Ca2+ homeostasis in cultured rat hippocampal neurons. Expression of a cocktail of shRNAs targeting rat Rem2 (rRem2) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) measured 10 d after transfection (14 d in vitro), but did not affect mEPSC amplitude. VGCC current amplitude after rRem2-targeted knockdown was not different from that in control cells, however, at either 4 or 10 d post transfection. Co-expression of a human Rem2 that was insensitive to the shRNAs targeting rRem2 was unable to prevent the reduction in mEPSC frequency after rRem2-targeted knockdown. Over-expression of rRem2 resulted in 50% reduction in VGCC current, but neither the mEPSC frequency nor amplitude was affected. Taken together, the observed effects upon synaptogenesis after shRNA treatment are more likely due to mechanisms other than modulation of VGCCs and Ca2+ homeostasis, and may be independent of Rem2. In addition, our results reveal a surprising lack of contribution of VGCCs to synaptogenesis during early development in cultured hippocampal neurons

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    Microbial Detoxification of Bifenthrin by a Novel Yeast and Its Potential for Contaminated Soils Treatment

    Get PDF
    Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20–40°C) and pH (5–9). On the basis of response surface methodology (RSM), the optimal degradation conditions were determined to be 32.3°C and pH 7.2. Under these conditions, the yeast completely metabolized bifenthrin (50 mg·L−1) within 8 days. This strain utilized bifenthrin as the sole carbon source for growth as well as co-metabolized it in the presence of glucose, and tolerated concentrations as high as 600 mg·L−1 with a qmax, Ks and Ki of 1.7015 day−1, 86.2259 mg·L−1 and 187.2340 mg·L−1, respectively. The yeast first degraded bifenthrin by hydrolysis of the carboxylester linkage to produce cyclopropanecarboxylic acid and 2-methyl-3-biphenylyl methanol. Subsequently, 2-methyl-3-biphenylyl methanol was further transformed by biphenyl cleavage to form 4-trifluoromethoxy phenol, 2-chloro-6-fluoro benzylalcohol, and 3,5-dimethoxy phenol, resulting in its detoxification. Eventually, no persistent accumulative product was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis. This is the first report of a novel pathway of degradation of bifenthrin by hydrolysis of ester linkage and cleavage of biphenyl in a microorganism. Furthermore, strain ZS-02 degraded a variety of pyrethroids including bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin. In different contaminated soils introduced with strain ZS-02, 65–75% of the 50 mg·kg−1 bifenthrin was eliminated within 10 days, suggesting the yeast could be a promising candidate for remediation of environments affected by bifenthrin. Finally, this is the first described yeast capable of degrading bifenthrin
    • …
    corecore