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We first present nonparaxial designs for a microcylindrical axilens with different long focal depths and rigor-
ously analyze electromagnetic field distributions of the axilens using integral equations and the boundary-
element method. Numerical results show that the designed axilenses indeed have the special feature of at-
taining a long focal depth while keeping high transverse resolution for numerical apertures of 2.4, 2.0, and 1.0.
The ratio between the extended focal depth of the designed axilens and the focal depth of the conventional focal
lens is 1.41, the corresponding maximal extended focal depth of the axilens can reach 28 mm, and the spot size
of the focal beam is ;10 mm over the focal range. © 2001 Optical Society of America

OCIS codes: 050.0050, 050.1970, 220.3620.
1. INTRODUCTION
As is well known, conventional optical focal lenses cannot
produce a beam with long focal depth and narrow lateral
width simultaneously. In recent years, various axilenses
and axicons have been suggested as diffractive optical el-
ements with a special function that modulates the inci-
dent light wave to produce a constant axial intensity dis-
tribution and narrow lateral width within a given long
focal range.1–8 This kind of element can be widely used
for high-precision alignment in some branches of optical
and mechanical engineering, in optical disk readout, in
magneto-optical storage devices, and so on. However, all
approaches and analyses for determining the phase func-
tion of the axilens or axicons have been in the paraxial
case and based on scalar-diffraction analysis methods.
To our knowledge, the design problem of an axilens in the
nonparaxial case based on rigorous electromagnetic
analysis has not been discussed in the literature up to
now. This motivates us to construct a phase function in
the nonparaxial case for the axilens with long focal depth
and high transverse resolution on the basis of vector dif-
fraction theory.

With the development of microfabrication technology,
diffractive microlenses can be fabricated practically with
use of modern microlithography. Diffractive micro-
lenses, refractive microlenses, and microlens arrays with
submicrometer-sized structure in integrated micro-opto-
electro-mechanical systems (MOEMs) have been exten-
sively investigated. The microaxilens with a long focal
depth and high transverse resolution in MOEMs is also
important, and we are motivated to study and analyze its
performance.

In this paper we present, as far as we know for the first
time, a rigorous electromagnetic analysis of a microax-
0740-3232/2001/071465-06$15.00 ©
ilens with long focal depth and high transverse resolu-
tion. We develop the method in the paraxial case pre-
sented by Davidson et al.1 to construct a phase function in
the nonparaxial case for designing a microcylindrical ax-
ilens with a long focal length. We numerically study and
analyze the optical performance of the axilens on the ba-
sis of vector diffractive theory and a rigorous solution of
the electromagnetic equations.9–13 The numerical simu-
lations are implemented with the use of the boundary-
element method (BEM).14–17

This paper consists of four sections. In Section 2 the
basic formulas and method are described for the bound-
ary integral equations. In Section 3 we present non-
paraxial designs for a microcylindrical axilens with a long
focal depth and analyze the rigorous numerical results.
A brief summary is given in Section 4.

2. INTEGRAL EQUATIONS
The two-dimensional scattering problem in a cylindrical
axilens system is shown in Fig. 1, in which the boundary
G with a curved surface structure divides the two-
dimensional space into two semi-infinite regions S1 and
S2 , and each of the regions Si (i 5 1,2) is filled by a ho-
mogeneous material with refractive index ni (i 5 1,2).
The unit vector n̂ is normal to the boundary G and is ori-
ented to region S1 . A plane light wave in space is nor-
mally incident on the boundary G on region S1 and then
travels into region S2 along the y-axis direction, i.e., the
axis of the focal axilens. To determine the transmitted
electric field distribution in region S2 , we apply Green’s
formula, the radiation condition, and Maxwell’s equations
to obtain the boundary integral equations9:
2001 Optical Society of America
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2E1~r1! 1 E
G
@E1~rG8 !n̂ • ¹G1~r1 , rG8 !

2 G1~r1 , rG8 !n̂ • ¹E1~rG8 !]dl8 5 2E inc~r1!, (1)

E2~r2! 1 E
G
@E2~rG8 !n̂ • ¹G2~r2 , rG8 !

2 G2~r2 , rG8 !n̂ • ¹E2~rG8 !]dl8 5 0. (2)

The boundary conditions on G are given by E1 5 E2 and
n̂ • ¹E1 5 n̂ • ¹E2 .

To solve these equations, two unknown quantities, the
local fields Ei and the corresponding normal derivatives
¹Ei on the boundary, must first be evaluated. We as-
sume that r1 and r2 approach a point rG on G; therefore
Eqs. (1) and (2) can be expressed as follows10–12:

S uG

2p
2 1 DE1~rG! 1 E

G
@E1~rG8 !n̂ • ¹G1~rG , rG8 !

2 G1~rG , rG8 !n̂ • ¹E1~rG8 !]dl8 5 2E inc~rG!, (3)

S uG

2p
DE2~rG! 1 E

G
@E2~rG8 !n̂ • ¹G2~rG , rG8 !

2 G2~rG , rG8 ! • ¹E2~rG8 !]dl8 5 0, (4)

where all the notation in Eqs. (1)–(4) is defined in Table 1
and the integral indicates Cauchy’s principal values of in-
tegration. Here the Green function

Gi~ri , rG8 ! 5 ~2j/4!H0
~2 !~kiuri 2 rG8 u! ~i 5 1, 2! (5)

is used, where H0
(2) is the zero-order Hankel function of

the second kind and ki 5 nik0 (i 5 1, 2), where k0 is the
free-space wave number, k0 5 2p/l, and l is the wave-
length of the incident light in free space.

To obtain the solutions of Ei and ¹Ei , we first employ
the BEM to solve Eqs. (3) and (4). The numerical ap-
proach of the BEM generally consists of the following
steps10,15–17:

(a) The boundary G is divided into m quadratic ele-
ments, and each quadratic element includes three nodes.
The optical field and its derivative over each element are
assumed to vary according to the interpolation functions
Ni (i 5 1, 2, 3),

Fig. 1. Schematic diagram of a two-dimensional scattering
problem in a cylindrical system.
N1 5 j~j 2 1 !/2,

N2 5 ~1 2 j!~1 1 j!, (6)

N3 5 j~1 1 j!/2,

where j 5 x, y.
(b) Equations (3) and (4) can then be cast into the

form of a set of linear equations by expanding E(rG) and
¹E(rG) over the quadratic elements as

E~rG! 5 H N1

N2

N3
J $EI~rG!,EII~rG!,EIII~rG!%, (7a)

¹E~rG! 5 H N1

N2

N3
J $¹EI~rG!,¹EII~rG!,¹EIII~rG!%, (7b)

where EI(II, III)(rG) and ¹EI(II, III)(rG) are the electric field
values and their normal derivatives at the three nodes of
each element.

(c) The integral over each element is carried out by us-
ing, in general, a numerical quadrature scheme. By solv-
ing these linear equations, we can obtain the local field Ei
and the normal derivative of the local field ¹Ei .

(d) The total electric field at any point on region S2
can thus be numerically calculated from Eq. (2).

In conventional design, one employs a rectangular win-
dow as the aperture of the axilens, and the profile of the
incident plane wave is abruptly truncated by this window.
This causes the incident beam to diffract into different di-
rections such that the incident light cannot be better fo-
cused by the axilens. Therefore the diffraction efficiency
of the axilens is rapidly reduced, and considerable energy
of the incident light is lost. To alleviate these losses, a
window function with smoothly varying edge profile is in-
troduced in our design. The window function is charac-
terized by a parameter s and is given by10

Table 1. Definition of Notation

Notation Definition

G Boundary between region S1 and S2

r1(2) Position vector in region S1(2)

rG(rG8 ) Position vector on the boundary G

dl8 Integral line element along the boundary G

n̂ Normal unit vector
E1(2)(r1(2)) Total field in region S1(2)

E1(2)(rG8 ) Local field at the boundary G
from region S1(2) approaching G

¹E1(2)(rG8 ) Normal derivative of the local field
at the boundary G from region S1(2)
approaching G

E inc(r1) Incident field in region S1

G1(2)(r1(2) , rG8 ) Green function in region S1(2)

¹G1(2)(r1(2) , rG8 ) Gradient Green function in region S1(2)

uG Internal angle at the point rG
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where D denotes the size of axilens aperture and s
5 1 mm is taken in our numerical calculations.

3. NUMERICAL SIMULATIONS
A. Design of a Microcylindrical Axilens with Long
Focal Depth
The phase function of the conventional focal cylindrical
lens can be approximately expressed as a quadratic term
in the paraxial case,1,18

f~x ! 5
2p

l

x2

2 f
, (9)

where f is the focal length of the lens and x is the coordi-
nate on the lens plane. If, instead of a constant focal
length f, the axilens were composed of zones each of which
possessed different focal length parameters in its phase
function expression, the entire depth-of-focus of element
would be enlarged. If we choose these zones to be con-
centric rings with infinitesimal width, the axilens phase
function can be rewritten as

f~x ! 5
2p

l

x2

2 f~x !
, (10)

where f(x) is a continuous function instead of a constant;
its form was suggested by Davidson et al.1 as follows:

f~x ! 5 f0 1 dy
x2

R2 , (11)

where 2R 5 D and f0 stand for the size of the aperture
and the starting focal length of the axilens, respectively,
and dy denotes a predesigned focal depth over which the
intensity along the y axis is required to be a constant dis-
tribution.

In the nonparaxial case, the phase function of the focal
lens is written as10,18

f~x ! 5 S n2

n1 2 n2
D ~ f 2 1 x2!1/2. (12)

Substituting Eq. (11) into Eq. (12), we can obtain the
phase function of the axilens in the nonparaxial case as
follows:

f~x ! 5 S n2

n1 2 n2
D F S f0 1 dy

x2

R2D 2

1 x2G1/2

. (13)

The parameters f0 and R in Eq. (13) can be chosen accord-
ing to a specific application, and dy takes a preset value.
The extended focal depth of the axilens can be increased
when the preset value of the focal depth dy is increased.
When the incident plane wave goes through the axilens
and is modulated by this phase function of the axilens,
then the incident field, E inc in Eqs. (1) and (3) involves the
phase function of Eq. (13) and is expressed as

E inc 5 w~x !exp@ f~x !#. (14)

Therefore, when the predesigned value of the focal depth
dy is changed, the distribution of the total field is also
changed.

B. Numerical Results
Assume that the size of the aperture of the axilens is D
5 30 mm and that the starting focal length of the axilens,
f0 is taken as 60 mm. In our calculations the refractive
indices n1 and n2 are taken as 1.5 for glass material and
1.0 for air, respectively. The preset focal depth dy is
taken to be 30 and 60 mm. We employ these parameters
to demonstrate the expanded focal depth of the focused
field and the lateral resolution of the focused beam over
S2 region.

We now calculate the intensity distributions of the total
electric field, including both the axial and the lateral di-
rections according to Eqs. (1)–(4) with the use of the BEM
to demonstrate the optical performance of the axilens
with different parameters. A plane wave with wave-
length l 5 1 mm in free space is normally incident on the
microcylindrical axilens along a negative direction of the
y axis, as shown in Fig. 1.

The characteristics around the focal region for the de-
signed axilens are shown in Figs. 2 and 3. Figure 2 dis-
plays the axial intensity distribution along the y axis, i.e.,
I(x 5 0, y), for different preset values of dy; curves a and
b correspond to dy 5 30 and 60 mm, respectively. For a
comparison, we also calculated the axial intensity distri-
bution for a conventional focal lens of dy 5 0 that has the
same aperture D and a focal length f0 , as shown by curve
c. By comparing curves a and b with curve c we can eas-
ily observe that the shapes of curves a and b become
wider than that of curve c. This means that the focal
depth of the axilens has indeed increased with an in-
crease in the value of dy, but the extended focal depth
cannot reach the preset value. If we consider an inten-
sity greater than 80% of maximal intensity as the average
value of the axial intensity, then the corresponding extent
along the y axis can be reasonably regarded as the ex-
tended focal depth of the axilens, which is drawn by the
dashed lines in Fig. 2. The extended focal depths of the
axilens are 18.5 and 22.0 mm for curves a and b, respec-
tively. However, the focal depth of the conventional lens
is only 15.2 mm. The ratio between the extended focal
depth of the designed axilens and the conventional focal
depth is 1.22 (1.45) for curve a (b). The focal planes cor-
responding to maximal intensity peak for curves a, b, and
c in Fig. 2 are located at y 5 261.5, 267.6, and 55.5 mm,
respectively.

To observe the lateral intensity distributions on the
planes for different distances from the microaxilens sur-
face, we calculated the lateral intensity of the axilens of
dy 5 60 mm, I(x, y 5 const.), at three different distances
from the axilens. The obtained results are shown in Fig.
3 for different values of y: The solid curve corresponds to
y 5 258 mm, the dashed curve to y 5 267 mm, and the
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dotted curve to y 5 281 mm. It is evident that the ax-
ilens exhibits the good characteristic that the total inten-
sity distribution of the electric fields is always concen-
trated on the central lobe, which is of a size close to the
diffraction-limited spot size 2.44l(F/D) ' 4.8 mm.

To present a global view of both the axial intensity dis-
tribution and the lateral resolution, we prefer to display
the field patterns in a 256 gray-level representation in
Fig. 4: (a) for dy 5 30 mm, (b) for dy 5 60 mm, and (c)
for dy 5 0 mm. The bright (dark) regions indicate the
area of the high (low) field intensity. From Figs. 4(a) and
4(b) we can globally see the total electric field intensity
condensed around the y axis over the focal range. These
figures verify that the designed axilens has the special
feature of long focal depth with high transverse resolu-
tion.

When the parameters in the design are changed, the
important feature of the axilens remains unchanged.
For instance, we designed an axilens with the aperture of
D 5 25 mm, with all the other parameters retained as
above. Figure 5 shows the axial intensity distributions
for different values of dy: Curves a and b are for dy
5 30 and 60 mm, respectively. For comparison, the focal
depth for the conventional focal lens (dy 5 0) is also pre-
sented, and the corresponding axial intensity distribu-

Fig. 2. Diffracted field intensity distribution as a function of the
axial distance around the focal region for the axilenses with dif-
ferent designed focal depths, where the size of the aperture of the
axilens is D 5 30 mm. Curves a and b are for axilenses with
preset focal depths dy 5 30 and 60 mm, respectively; curve c is
for the conventional focal lens, dy 5 0.

Fig. 3. Diffracted intensity distribution on three planes of dif-
ferent distances from the axilens surface: dashed curve, for y
5 258 mm; solid curve, for y 5 267 mm; dotted curve, for y
5 281 mm.
Fig. 4. Intensity distribution of the electric field plotted in a 256
gray-level representation for axilenses with present focal depths
(a) dy 5 30 mm and (b) dy 5 60 mm, and for (c) the conventional
lens, dy 5 0 mm. The bright (dark) region indicates the high
(low) field intensity areas.
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tions is plotted as curve c in Fig. 5. The extended focal
depths are 24.0 mm for curve a and 28.3 mm for curve b.
The focal depth of the conventional lens is only 20.1 mm.
The ratio between the extended focal depth of the de-
signed axilens and the conventional focal depth is 1.19
(1.41) for curve a (b). When curve a (b) in Fig. 5 is com-
pared with curve a (b) in Fig. 2, it is evident that the ex-
tended focal depths in Fig. 5 are larger than those in Fig.
2, at the expense of a reduction in intensity along the y
axis. These results are expected because of the reduction
in the size of the aperture. Focal planes with maximal
intensity peaks appear at y 5 260.3, 265.8, and 254.7
mm for curves a, b, and c, respectively in Fig. 5. Figure 6
describes the lateral intensity distribution for the axilens
of dy 5 60 mm at three different planes within the focal
range. Solid, dashed, and dotted curves correspond to
the lateral intensity distributions at the planes y
5 254, 265, and 282 mm, respectively. Thus it can be

seen clearly that the total intensity distribution of the
electric fields is always condensed on the central lobe, on
which the spot size is 10.54 mm, larger than the
diffraction-limited spot size of 5.86 mm.

We present another 256 gray-level representation in
Fig. 7: Figs. 7(a), 7(b), and 7(c) correspond to dy 5 30,
60, and 0 mm, respectively. From Fig. 7 it is globally
seen that the focal extent of the focused beam is expanded

Fig. 5. Axial intensity distribution around the focal range for
axilenses with aperture D 5 25 mm and with different preset fo-
cal depth parameters. Curves a and b are for preset focal
depths dy 5 30 and 60 mm, respectively; curve c is for the con-
ventional focal lens, dy 5 0.

Fig. 6. Lateral intensity distribution on three planes of differ-
ent distances from the axilens surface: dashed curve, y
5 254 mm; solid curve, y 5 265 mm; dotted curve, y
5 282 mm.
and is longer than that in Fig. 4 but that the spot size is
wider than that in Fig. 4.

The numerical apertures (NA’s) in Figs. 2 and 5 are
taken as 2.0 and 2.4, respectively. We also investigate

Fig. 7. Same as Fig. 4, except that the aperture of the axilens is
25 mm.
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the optical performance of the microaxilens for the case of
high f-number, for instance, NA 5 1.0. We reduce f0 to
30 mm; the other parameters are the same as in Fig. 2.
Figure 8 shows the axial intensity distribution along the y
axis, i.e., I(x 5 0, y), for different preset values of dy
5 30, 60, and 0 mm for curves a, b, and c, respectively.
The extended focal depths of the axilens are 6.6 and 9.1
mm for curves a and b, respectively, and the focal depth of
the conventional lens is 5.2 mm, corresponding to curve c.
The ratio between the extended focal depth of the axilens
and the conventional focal depth is 1.27 (1.75) for curve a
(b). It is evident that the extended focal depth for NA
5 1.0 in Fig. 8 is shorter than that for NA 5 2.0 in Fig. 2
even though the preset focal depth is the same. These re-
sults verify that the microaxilens still has good optical
performance with long focal depth and narrow transverse
resolution even though NA is reduced to 1.0. However, if
NA is reduced to 0.5, the optical performance of the ax-
ilens deteriorates.

4. SUMMARY
In this paper we have presented nonparaxial designs of
the microaxilens and implemented a rigorous electric
magnetic analysis for the microaxilens with the use of in-
tegral equations and the boundary-element method. The
results of numerical simulations have shown that the de-
signed axilens has the special feature of long focal depth
and high transverse resolution simultaneously for NA
5 2.4, 2.0, and 1.0. The maximal extended focal depth
can reach 28 mm, and the corresponding ratio between the
extended focal depth and the conventional focal depth is
1.41. The extended focal depth of the axilens is increased
when the predesignated focal depth parameter is in-
creased. However, the extended depth of focus cannot
reach the preset value.

It is expected that the microaxilens with long focal
depth and high transverse resolution may be very useful
for practical applications in micro-opto-electro-
mechanical systems.
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