1,413 research outputs found

    A Study of the Cyclone Fractional Efficiency Curves

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical Article from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 4 (2002): L. Wang, C.B. Parnell and B.W. Shaw. A Study of the Cyclone Fractional Efficiency Curves. Vol. IV. June 2002

    Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot

    Full text link
    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to (i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and (ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that (i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and (ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behaviour with the absorption being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on Helio-and-Astroseismolog

    Inelastic Lateral-Torsional Buckling Strength Validation for Non-Principal Axis Bending Using Numerical Methods

    Get PDF
    Final project report.The current design specification for point-symmetric cold-formed steel members in North America (AISI S100) has long applied a conservative simplification for elastic lateral-torsional buckling. This report aims to provide additional validation of a recently proposed design approach. The validation involves a series of numerical analyses designed to assess the accuracy of proposed changes for lateral-torsional buckling behavior of point-symmetric section bent about a non-principal axis. Using a set of 14 lipped Zee sections with sharp corners, numerical analysis was carried out for elastic buckling using the finite strip method, and shell finite element method, and in addition inelastic shell finite element collapse analysis was conducted to determine the expected strength. As reference, analytical equations from previous research (Glauz, 2017) are also used to validate the elastic lateral-torsional buckling simulations. Nominal flexural capacity was predicted by three design methods: AISI S100-16 approximate approach, AISI S100-16 linear interaction approach, and a new method considering direct bi-axial bending. The simulation results are compared with the proposed provisions for both stability and strength determination. The level of conservatism in the strength predictions is high for the selected members based on the assessment of the data, especially for those members with higher global slenderness. The assessment in this report focused primarily on the global inelastic buckling range, where it was found that the method considering direct bi-axial bending is preferred.American Iron and Steel Institut

    Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps

    Full text link
    Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three "post-facto" methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill-fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the "post-facto" methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.Comment: Accepted for publication in Solar Physics. The final publication (including full-resolution figures) will be available at http://www.springerlink.co

    On Signatures of Twisted Magnetic Flux Tube Emergence

    Full text link
    Recent studies of NOAA active region 10953, by Okamoto {\it et al.} ({\it Astrophys. J. Lett.} {\bf 673}, 215, 2008; {\it Astrophys. J.} {\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\it Astrophys. J. Lett.} {\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.Comment: 14 pages, 8 figures, accepted for publication in Solar Physic

    Mining Contrast Subspaces

    Get PDF
    In this paper, we tackle a novel problem of mining contrast subspaces. Given a set of multidimensional objects in two classes C+  and C− and a query object o, we want to find top-k subspaces S that maximize the ratio of likelihood of o in C+  against that in C−. We demonstrate that this problem has important applications, and at the same time, is very challenging. It even does not allow polynomial time approximation. We present CSMiner, a mining method with various pruning techniques. CSMiner is substantially faster than the baseline method. Our experimental results on real data sets verify the effectiveness and efficiency of our method

    A detailed study of giant pulses from PSR B1937-1-21 using the Large European Array for Pulsars

    Get PDF
    Contains fulltext : 202558.pdf (Publisher’s version ) (Open Access

    Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC

    Full text link
    We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.Comment: 10 pages, 11 figure
    • …
    corecore