53,667 research outputs found

    Enhanced Kerr nonlinearity for self-action via atomic coherence in a four-level atomic system

    Full text link
    Enhancement of optical Kerr nonlinearity for self-action by electro-magnetically induced transparency in a four-level atomic system including dephasing between the ground states is studied in detail by solving the density matrix equations for the atomic levels. We discern three major contributions, from energy shifts of the ground states induced by the probe light, to the third-order susceptibility in the four-level system. In this four-level system with the frequency-degenerate probes, quantum interference amongst the three contributions can, not only enhance the third-order susceptibility more effectively than in the three-level system with the same characteristic parameters, but also make the ratio between its real and imaginary part controllable. Due to dephasing between the two ground states and constructive quantum interference, the most effective enhancement generally occurs at an offset that is determined by the atomic transition frequency difference and the coupling Rabi frequency.Comment: Permanent email address: [email protected]. Accepted by Optics Communication

    NARX-based nonlinear system identification using orthogonal least squares basis hunting

    No full text
    An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

    Manipulating Synchronous Optical Signals with a Double Λ\Lambda Atomic Ensemble

    Full text link
    We analyze a double Λ\Lambda atomic configuration interacting with two signal beams and two control beams. Because of the quantum interference between the two Λ\Lambda channels, the four fields are phase-matched in electromagnetically induced transparency. Our numerical simulation shows that this system is able to manipulate synchronous optical signals, such as generation of optical twin signals, data correction, signal transfer and amplification in the atomic storage.Comment: 5 pages, 7 figure

    Summary of Results on Hard Probes

    Full text link
    Results on observables related to hard scattering processes as presented at this conference are reviewed. This includes in particular measurements related to jet quenching, a phenomenon which has been predicted as a signature for the hot and dense early phase of strongly interacting matter.Comment: Summary talk at Quark Matter 2002, Nantes, Proceedings to be published in Nucl. Phys. A, 10 pages, 6 figures, (one figure added in this version

    Glucocorticoid Receptor and Adipocyte Biology.

    Get PDF
    Glucocorticoids are steroid hormones that play a key role in metabolic adaptations during stress, such as fasting and starvation, in order to maintain plasma glucose levels. Excess and chronic glucocorticoid exposure, however, causes metabolic syndrome including insulin resistance, dyslipidemia, and hyperglycemia. Studies in animal models of metabolic disorders frequently demonstrate that suppressing glucocorticoid signaling improves insulin sensitivity and metabolic profiles. Glucocorticoids convey their signals through an intracellular glucocorticoid receptor (GR), which is a transcriptional regulator. The adipocyte is one cell type that contributes to whole body metabolic homeostasis under the influence of GR. Glucocorticoids' functions on adipose tissues are complex. Depending on various physiological or pathophysiological states as well as distinct fat depots, glucocorticoids can either increase or decrease lipid storage in adipose tissues. In rodents, glucocorticoids have been shown to reduce the thermogenic activity of brown adipocytes. However, in human acute glucocorticoid exposure, glucocorticoids act to promote thermogenesis. In this article, we will review the recent studies on the mechanisms underlying the complex metabolic functions of GR in adipocytes. These include studies of the metabolic outcomes of adipocyte specific GR knockout mice and identification of novel GR primary target genes that mediate glucocorticoid action in adipocytes

    Mechanical Characterization of Fourth Generation Composite Humerus

    Get PDF
    Mechanical data on upper extremity surrogate bones, supporting use as biomechanical tools, is limited. The objective of this study was to characterize the structural behaviour of the fourth-generation composite humerus under simulated physiologic bending, specifically, stiffness, rigidity, and mid-diaphysial surface strains. Three humeri were tested in four-point bending, in anatomically defined anteroposterior (AP) and mediolateral (ML) planes. Stiffness and rigidity were derived using load–displacement data. Principal strains were determined at the anterior, posterior, medial, and lateral surfaces in the humeral mid-diaphysial transverse plane of one specimen using stacked rosettes. Linear structural behaviour was observed within the test range. Average stiffness and rigidity were greater in the ML (918 ± 18 N/mm; 98.4 ± 1.9 Nm2) than the AP plane (833 ± 16 N/mm; 89.3 ± 1.6 Nm2), with little inter-specimen variability. The ML/AP rigidity ratio was 1.1. Surface principal strains were similar at the anterior (5.41 µε/N) and posterior (5.43 µε/N) gauges for AP bending, and comparatively less for ML bending, i.e. 5.1 and 4.5 µε/N, at the medial and lateral gauges, respectively. This study provides novel strain and stiffness data for the fourth-generation composite humerus and also adds to published construct rigidity data. The presented results support the use of this composite bone as a tool for modelling and experimentation
    corecore