6,532 research outputs found
EBW technology applied on the ICRF antenna component
Central conductor is one of the key components of ion cyclotron ranges of heating antenna, which is usually formed by welding due to the complex structures. High level of welding seam quality and small deformation are very important to central conductor. Electron beam welding (EBW) is suggested as the central conductor welding. To meet EBW requirements and reduce the risk, complex and high level of the accuracy welding fixture have been designed for central conductor EBW. Some samples were manufactured to do test and examination for EBW qualification before central conductor welding. Based on the welding parameters, thermal analysis using finite element method for the welding seam have been carried out. One mockup of central conductor for EBW has been made for proving welding parameters. In addition, some postwelding process were employed after one central conductor EBW. Results of examination and inspection of one central conductor using EBW are presented in this paper
Full Length Research Paper Curcumin induces cleavage of -catenin by activation of capases and downregulates the β-catenin/Tcf signaling pathway in HT-29 cells
β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be inhibited by caspase inhibitors. The association of β-catenin with Tcf-4 in nucleus could be inhibited by curcumin. The expression of c-myc and cyclinD1 was downregulated by curcumin, which could not be blocked by Z-DEVD-FMK. The results showed curcumin could induce thecleavage of β-catenin by activition of caspases and downregulate the activity of β-catenin/Tcf signaling pathway independent of the caspases in HT-29 cells
Exploring the "energy-saving personality traits" in the office and household situation: An empirical study
Behavior-driven energy conservation has been a promising strategy for reducing building energy consumption as well as carbon emissions. With the intention of revealing the impacts of an individual’s personality basis on energy conservation behavioral attitudes and intentions in households and offices, the present study proposes and conducts an experiment in Xi’an, China with two groups for the investigation of such attitudes towards household energy-saving behavior (HESB) and office energy-saving behavior (OESB), respectively. The research adopts structural equation modeling for experiment data analysis. The analysis results suggest that the two personality traits, Agreeableness and Neuroticism, are significantly related to both HESB and OESB attitudes. Especially, agreeable people tend to present stronger energy-saving attitudes, while individuals with higher Neuroticism are less likely to do so. The results indicate that the impacts of these two traits on energy-saving attitude are found to be less influenced by different environment settings. Further, the results find that Extraversion positively influences energy-saving attitude in the office environment, while Openness only significantly works in the household environment. It is hoped that the findings of the present study can provide informative references to energy-saving intervention design as well as further studies on the spillover of pro-environmental behaviors.</jats:p
Management of Extracranial Carotid Artery Aneurysms:17 Years» Experience
AbstractObjectives:a retrospective review of seventeen-year (1980–1996) experience of the management of extracranial carotid artery aneurysms.Patients and methods:sixty-six aneurysms of extracranial carotid artery were seen in 63 patients. The diagnosis was confirmed by angiography in 51 patients and duplex ultrasonography in twelve. Twenty-eight (42%) patients had an atherosclerotic aneurysm, twenty-two (33%) had false aneurysms secondary to trauma, nine were congenital and seven were mycotic. All underwent aneurysm resection with saphenous-vein-graft interposition as the most common means of reconstruction.Results:one death occurred due to septicaemia in a diabetic patient with a mycotic aneurysm, giving an operative mortality of 1.5%. One patient had an immediate hemiparesis after carotid artery ligation, and three had a hemiparesis within 48 hours of operation (6.1%). After a change in technique to avoid a residual carotid stump, no further neurological problems were encountered in the following 28 patients.Conclusion:extracranial carotid aneurysms may be successfully managed with resection and reconstruction with autogenous saphenous vein. End-to-side anastomosis avoids a blind-ending stump which may be the source of emboli
Fuzzy decision-making fuser (FDMF) for integrating human-machine autonomous (HMA) systems with adaptive evidence sources
© 2017 Liu, Pal, Marathe, Wang and Lin. A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems
Selective interaction of Hpn-like protein with nickel, zinc and bismuth in vitro and in cells by FRET
Hpn-like (Hpnl) is a unique histidine- and glutamine-rich protein found only in Helicobacter pylori and plays a role on nickel homeostasis.Weconstructed the fluorescent sensor proteins CYHpnl and CYHpnl_1-48 (C-terminal glutamine-rich region truncated) using enhanced cyan and yellow fluorescent proteins (eCFP and eYFP) as the donor–acceptor pair to monitor the interactions of Hpnl with metal ions and to elucidate the role of conserved Glu-rich sequence in Hpnl by fluorescence resonance energy transfer (FRET). CYHpnl and CYHpnl_1-48 exhibited largest responses towards Ni(II) and Zn(II) over other metals studied and the binding of Bi(III) to CYHpnl was observed in the presence of an excess amount of Bi(III) ions (Kd =115±4.8 μM). Moreover, both CYHpnl and CYHpnl_1-48 showed positive FRET responses towards the binding to Ni(II) and Zn(II) in Escherichia coli cells overexpressing CYHpnl and CYHpnl_1-48, whereas a decrease in FRET upon Bi(III)-binding in E. coli cells overexpressing the latter. Our study provides clear evidence on Hpnl binding to nickel in cells, and intracellular interaction of Hpnl with Bi(III) could disrupt the protein function, thus probably contributing to the efficacy of Bi(III) drugs against H. pylori.postprin
Geochemical Constrains on Nature of Source Region of The Late Permian Emeishan Continental Flood Basalts, SW China
Abstract in http://www.lpi.usra.edu/meetings/gold2001/pdf/3488.pd
A new hybrid approach to human error probability quantification-applications in maritime operations
Human Reliability Analysis (HRA) has always been an essential research issue in safety critical systems. Cognitive Reliability Error Analysis Method (CREAM), as a well-known second generation HRA method is capable of conducting both retrospective and prospective analysis, thus being widely used in many sectors. However, the needs of addressing the use of a deterministic approach to configure common performance conditions (CPCs) and the assignment of the same importance to all the CPCs in a traditional CREAM method reveal a significant research gap to be fulfilled. This paper describes a modified CREAM methodology based on an Evidential Reasoning (ER) approach and a Decision Making Trial and Evaluation Laboratory (DEMATEL) technique for making human error probability quantification in CREAM rational. An illustrative case study associated with maritime operations is presented. The proposed method is validated by sensitivity analysis and the quantitative analysis result is verified through comparing the real data collected from Shanghai coastal waters. Its main contribution lies in that it for the first time addresses the data incompleteness in HEP, given that the previous relevant studies mainly focus on the fuzziness in data. The findings will provide useful insights for quantitative assessment of seafarers' errors to reduce maritime risks due to human errors
Comparison of 68Ga-DOTANOC with 18F-FDG using PET/MRI imaging in patients with pulmonary tuberculosis
We compared the somatostatin analog radioligand, DOTANOC, with FDG, to determine whether there was increased detection of active or sub-clinical lesions in pulmonary tuberculosis (TB) with DOTANOC. Three groups were recruited: (1) active pulmonary TB; (2) IGRA-positive household TB contacts; (3) pneumonia (non-TB). DOTANOC PET/MRI followed by FDG PET/MRI was performed in active TB and pneumonia groups. TB contacts underwent FDG PET/MRI, then DOTANOC PET/MRI if abnormalities were detected. Quantitative and qualitative analyses were performed for total lung and individual lesions. Eight active TB participants, three TB contacts and three pneumonia patients had paired PET/MRI scans. In the active TB group, median SUVmax[FDG] for parenchymal lesions was 7.69 (range 3.00–15.88); median SUVmax[DOTANOC] was 2.59 (1.48–6.40). Regions of tracer uptake were fairly similar for both radioligands, albeit more diffusely distributed in the FDG scans. In TB contacts, two PET/MRIs had parenchymal lesions detected with FDG (SUVmax 5.50 and 1.82), with corresponding DOTANOC uptake < 1. FDG and DOTANOC uptake was similar in pneumonia patients (SUVmax[FDG] 4.17–6.18; SUVmax[DOTANOC] 2.92–4.78). DOTANOC can detect pulmonary TB lesions, but FDG is more sensitive for both active and sub-clinical lesions. FDG remains the preferred ligand for clinical studies, although DOTANOC may provide additional value for pathogenesis studies
Fractional Anisotropy in Corpus Callosum Is Associated with Facilitation of Motor Representation during Ipsilateral Hand Movements
BACKGROUND: Coactivation of primary motor cortex ipsilateral to a unilateral movement (M1(ipsilateral)) has been observed, and the magnitude of activation is influenced by the contracting muscles. It has been suggested that the microstructural integrity of the callosal motor fibers (CMFs) connecting M1 regions may reflect the observed response. However, the association between the structural connectivity of CMFs and functional changes in M1(ipsilateral) remains unclear. The purpose of this study was to investigate the relationship between functional changes within M1(ipsilateral) during unilateral arm or leg movements and the microstructure of the CMFs connecting both homotopic representations (arm or leg). METHODS: Transcranial magnetic stimulation was used to assess changes in motor evoked potentials (MEP) in an arm muscle during unilateral movements compared to rest in fifteen healthy adults. Functional magnetic resonance imaging was then used to identify regions of M1 associated with either arm or leg movements. Diffusion-weighted imaging data was acquired to generate CMFs for arm and leg areas using the areas of activation from the functional imaging as seed masks. Individual values of regional fractional anisotropy (FA) of arm and leg CMFs was then calculated by examining the overlap between CMFs and a standard atlas of corpus callosum. RESULTS: The change in the MEP was significantly larger in the arm movement compared to the leg movement. Additionally, regression analysis revealed that FA in the arm CMFs was positively correlated with the change in MEP during arm movement, whereas a negative correlation was observed during the leg movement. However, there was no significant relationship between FA in the leg CMF and the change in MEP during the movements. CONCLUSIONS: These findings suggest that individual differences in interhemispheric structural connectivity may be used to explain a homologous muscle-dominant effect within M1(ipsilateral) hand representation during unilateral movement with topographical specificity
- …